Skip to main content
Erschienen in: Current Osteoporosis Reports 1/2016

01.02.2016 | Rare Bone Disease (CB Langman and E Shore, Section Editors)

Advances in the Classification and Treatment of Osteogenesis Imperfecta

verfasst von: Inas H. Thomas, Linda A. DiMeglio

Erschienen in: Current Osteoporosis Reports | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Osteogenesis imperfecta (OI) is a rare disorder of type 1 collagen with 13 currently identified types attributable to inherited abnormalities in type 1 collagen amount, structure, or processing. The disease is characterized by an increased susceptibility to bony fracture. In addition to the skeletal phenotype, common additional extraskeletal manifestations include blue sclerae, dentinogenesis imperfecta, vascular fragility, and hearing loss. Medical management is focused on minimizing the morbidity of fractures, pain, and bone deformities by maximizing bone health. Along with optimizing Vitamin D status and calcium intake and physical/occupational therapy, individualized surgical treatment may be indicated. Pharmacological therapy with bisphosphonate medications is now routinely utilized for moderate to severe forms and appears to have a good safety profile and bone health benefits. New therapies with other anti-resorptives as well as anabolic agents and transforming growth factor (TGF)β antibodies are in development. Other potential treatment modalities could include gene therapy or mesenchymal cell transplant. In the future, treatment choices will be further individualized in order to reduce disease morbidity and mortality.
Literatur
3.•
Zurück zum Zitat Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164(6):1470–81. doi:10.1002/ajmg.a.36545. The Sillence classification labeled four different types of OI based on phenotype. As more types of OI have been identified, additional categories were created based on the genetic mutation. With this reclassification, the different OI syndromes will now be classified again by overarching categories which will compliment the genetic mutation and provide phenotype information.CrossRefPubMedCentral Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164(6):1470–81. doi:10.​1002/​ajmg.​a.​36545. The Sillence classification labeled four different types of OI based on phenotype. As more types of OI have been identified, additional categories were created based on the genetic mutation. With this reclassification, the different OI syndromes will now be classified again by overarching categories which will compliment the genetic mutation and provide phenotype information.CrossRefPubMedCentral
4.
5.
7.•
Zurück zum Zitat Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SCS, Dawson BC, et al. Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res. 2013;28(7):1523–30. doi:10.1002/jbmr.1891. Further information about the phenotype and its variability about this rare type of OI is presented.CrossRefPubMedPubMedCentral Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SCS, Dawson BC, et al. Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res. 2013;28(7):1523–30. doi:10.​1002/​jbmr.​1891. Further information about the phenotype and its variability about this rare type of OI is presented.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Dimasi D, Chen J, Hewitt A, Klebe S, Davey R, Stirling J, et al. Novel quantitative trait loci for central corneal thickness identified by candidate gene analysis of osteogenesis imperfecta genes. Hum Genet. 2010;127(1):33–44. doi:10.1007/s00439-009-0729-3.CrossRefPubMed Dimasi D, Chen J, Hewitt A, Klebe S, Davey R, Stirling J, et al. Novel quantitative trait loci for central corneal thickness identified by candidate gene analysis of osteogenesis imperfecta genes. Hum Genet. 2010;127(1):33–44. doi:10.​1007/​s00439-009-0729-3.CrossRefPubMed
13.
Zurück zum Zitat Chau FY, Wallace D, Vajaranant T, Herndon L, Lee P, Challa P, et al. Chapter 31—osteogenesis imperfecta and the eye. In: Sponseller JRSHBHGD, editor. Osteogenesis Imperfecta. San Diego: Academic; 2014. p. 289–303.CrossRef Chau FY, Wallace D, Vajaranant T, Herndon L, Lee P, Challa P, et al. Chapter 31—osteogenesis imperfecta and the eye. In: Sponseller JRSHBHGD, editor. Osteogenesis Imperfecta. San Diego: Academic; 2014. p. 289–303.CrossRef
16.
Zurück zum Zitat Paterson CR, Monk EA, McAllion SJ. How common is hearing impairment in osteogenesis imperfecta? J Laryngol Otol. 2001;115(4):280–2.CrossRefPubMed Paterson CR, Monk EA, McAllion SJ. How common is hearing impairment in osteogenesis imperfecta? J Laryngol Otol. 2001;115(4):280–2.CrossRefPubMed
18.
Zurück zum Zitat Hansen B, Jemec GB. The mechanical properties of skin in osteogenesis imperfecta. Arch Dermatol. 2002;138(7):909–11.PubMed Hansen B, Jemec GB. The mechanical properties of skin in osteogenesis imperfecta. Arch Dermatol. 2002;138(7):909–11.PubMed
19.
Zurück zum Zitat Marini J. Osteogenesis imperfecta. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000. Marini J. Osteogenesis imperfecta. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.
21.
Zurück zum Zitat Sillence DO. Craniocervical abnormalities in osteogenesis imperfecta: genetic and molecular correlation. Pediatr Radiol. 1994;24(6):427–30.CrossRefPubMed Sillence DO. Craniocervical abnormalities in osteogenesis imperfecta: genetic and molecular correlation. Pediatr Radiol. 1994;24(6):427–30.CrossRefPubMed
23.
Zurück zum Zitat Vetter U, Pontz B, Zauner E, Brenner RE, Spranger J. Osteogenesis imperfecta: a clinical study of the first ten years of life. Calcif Tissue Int. 1992;50:36–41.CrossRefPubMed Vetter U, Pontz B, Zauner E, Brenner RE, Spranger J. Osteogenesis imperfecta: a clinical study of the first ten years of life. Calcif Tissue Int. 1992;50:36–41.CrossRefPubMed
25.
Zurück zum Zitat Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, et al. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome—osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33(10):1444–9. doi:10.1002/humu.22133.CrossRefPubMed Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, et al. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome—osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33(10):1444–9. doi:10.​1002/​humu.​22133.CrossRefPubMed
28.
Zurück zum Zitat Bianchi ML. Hypophosphatasia: an overview of the disease and its treatment. Osteoporos Int: J Established Result Coop Between Eur Foundation Osteoporos Natl Osteoporos Foundation USA. 2015. doi:10.1007/s00198-015-3272-1. Bianchi ML. Hypophosphatasia: an overview of the disease and its treatment. Osteoporos Int: J Established Result Coop Between Eur Foundation Osteoporos Natl Osteoporos Foundation USA. 2015. doi:10.​1007/​s00198-015-3272-1.
29.
Zurück zum Zitat Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.CrossRefPubMed Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.CrossRefPubMed
30.
Zurück zum Zitat Okajima T, Fukumoto S, Furukawa K, Urano T, Furukawa K. Molecular basis for the progeroid variant of Ehlers-Danlos Syndrome: identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem. 1999;274(41):28841–4. doi:10.1074/jbc.274.41.28841.CrossRefPubMed Okajima T, Fukumoto S, Furukawa K, Urano T, Furukawa K. Molecular basis for the progeroid variant of Ehlers-Danlos Syndrome: identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem. 1999;274(41):28841–4. doi:10.​1074/​jbc.​274.​41.​28841.CrossRefPubMed
32.
35.•
Zurück zum Zitat Bishop N, Adami S, Ahmed SF, Anton J, Arundel P, Burren CP, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1424–32. doi:10.1016/S0140-6736(13)61091-0. This paper demonstrating benefits of oral risedronate therapy on bone mineral density and fracture rates re-opened the door to use of oral bisphosphonate for children with milder OI.CrossRefPubMed Bishop N, Adami S, Ahmed SF, Anton J, Arundel P, Burren CP, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1424–32. doi:10.​1016/​S0140-6736(13)61091-0. This paper demonstrating benefits of oral risedronate therapy on bone mineral density and fracture rates re-opened the door to use of oral bisphosphonate for children with milder OI.CrossRefPubMed
37.
Zurück zum Zitat Munns CF, Rauch F, Mier RJ, Glorieux FH. Respiratory distress with pamidronate treatment in infants with severe osteogenesis imperfecta. Bone. 2004;35(1):231–4.CrossRefPubMed Munns CF, Rauch F, Mier RJ, Glorieux FH. Respiratory distress with pamidronate treatment in infants with severe osteogenesis imperfecta. Bone. 2004;35(1):231–4.CrossRefPubMed
38.
Zurück zum Zitat Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779–86.CrossRefPubMed Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779–86.CrossRefPubMed
39.
Zurück zum Zitat Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. 2006;91(4):1268–74. doi:10.1210/jc.2005-2413.CrossRefPubMed Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. 2006;91(4):1268–74. doi:10.​1210/​jc.​2005-2413.CrossRefPubMed
40.
Zurück zum Zitat Shapiro JR, Thompson CB, Wu Y, Nunes M, Gillen C. Bone mineral density and fracture rate in response to intravenous and oral bisphosphonates in adult osteogenesis imperfecta. Calcif Tissue Int. 2010;87(2):120–9. doi:10.1007/s00223-010-9383-y.CrossRefPubMed Shapiro JR, Thompson CB, Wu Y, Nunes M, Gillen C. Bone mineral density and fracture rate in response to intravenous and oral bisphosphonates in adult osteogenesis imperfecta. Calcif Tissue Int. 2010;87(2):120–9. doi:10.​1007/​s00223-010-9383-y.CrossRefPubMed
41.
Zurück zum Zitat Bargman R, Posham R, Boskey AL, DiCarlo E, Raggio C, Pleshko N. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporos Int. 2012;23(3):1141–50. doi:10.1007/s00198-011-1742-7.CrossRefPubMedPubMedCentral Bargman R, Posham R, Boskey AL, DiCarlo E, Raggio C, Pleshko N. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporos Int. 2012;23(3):1141–50. doi:10.​1007/​s00198-011-1742-7.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8.PubMed Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8.PubMed
43.
Zurück zum Zitat Antoniazzi F, Bertoldo F, Mottes M, Valli M, Sirpresi S, Zamboni G, et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr. 1996;129(3):432–9.CrossRefPubMed Antoniazzi F, Bertoldo F, Mottes M, Valli M, Sirpresi S, Zamboni G, et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr. 1996;129(3):432–9.CrossRefPubMed
44.
Zurück zum Zitat Antoniazzi F, Monti E, Venturi G, Franceschi R, Doro F, Gatti D, et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol. 2010;163(3):479–87. doi:10.1530/eje-10-0208.CrossRefPubMed Antoniazzi F, Monti E, Venturi G, Franceschi R, Doro F, Gatti D, et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol. 2010;163(3):479–87. doi:10.​1530/​eje-10-0208.CrossRefPubMed
45.•
Zurück zum Zitat Orwoll ES, Shapiro J, Veith S, Wang Y, Lapidus J, Vanek C, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8. doi:10.1172/jci71101. This paper demonstrating bone density and fracture benefits of oral risedronate re-opened the door to use of oral bisphosphonate for children with milder OI.CrossRefPubMedPubMedCentral Orwoll ES, Shapiro J, Veith S, Wang Y, Lapidus J, Vanek C, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8. doi:10.​1172/​jci71101. This paper demonstrating bone density and fracture benefits of oral risedronate re-opened the door to use of oral bisphosphonate for children with milder OI.CrossRefPubMedPubMedCentral
46.••
Zurück zum Zitat Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670–5. doi:10.1038/nm.3544. This paper offers a novel mechanistic explanation for how the collagen and collagen-related mutations in the OI types result in brittle bones and opens the door to a new, personalized therapeutic approach to therapy for the disease.CrossRefPubMedPubMedCentral Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670–5. doi:10.​1038/​nm.​3544. This paper offers a novel mechanistic explanation for how the collagen and collagen-related mutations in the OI types result in brittle bones and opens the door to a new, personalized therapeutic approach to therapy for the disease.CrossRefPubMedPubMedCentral
Metadaten
Titel
Advances in the Classification and Treatment of Osteogenesis Imperfecta
verfasst von
Inas H. Thomas
Linda A. DiMeglio
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 1/2016
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-016-0299-y

Weitere Artikel der Ausgabe 1/2016

Current Osteoporosis Reports 1/2016 Zur Ausgabe

Epidemiology and Pathophysiology (J Cauley and B Dawson-Hughes, Section Editors)

Aberrant Myeloid Differentiation Contributes to the Development of Osteoporosis in Neurofibromatosis Type 1

Skeletal Development (E Schipani and E Zelzer, Section Editors)

SOXC Genes and the Control of Skeletogenesis

Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)

Osteoblastic Actions of the Neuropeptide Y System to Regulate Bone and Energy Homeostasis

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

The Role of Osteocytes in Age-Related Bone Loss

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.