Skip to main content
Erschienen in: Current Pain and Headache Reports 6/2017

01.06.2017 | Neuropathic Pain (E Eisenberg, Section Editor)

Neuropathic Pain: Central vs. Peripheral Mechanisms

verfasst von: Kathleen Meacham, Andrew Shepherd, Durga P. Mohapatra, Simon Haroutounian

Erschienen in: Current Pain and Headache Reports | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Our goal is to examine the processes—both central and peripheral—that underlie the development of peripherally-induced neuropathic pain (pNP) and to highlight recent evidence for mechanisms contributing to its maintenance. While many pNP conditions are initiated by damage to the peripheral nervous system (PNS), their persistence appears to rely on maladaptive processes within the central nervous system (CNS). The potential existence of an autonomous pain-generating mechanism in the CNS creates significant implications for the development of new neuropathic pain treatments; thus, work towards its resolution is crucial. Here, we seek to identify evidence for PNS and CNS independently generating neuropathic pain signals.

Recent Findings

Recent preclinical studies in pNP support and provide key details concerning the role of multiple mechanisms leading to fiber hyperexcitability and sustained electrical discharge to the CNS. In studies regarding central mechanisms, new preclinical evidence includes the mapping of novel inhibitory circuitry and identification of the molecular basis of microglia-neuron crosstalk. Recent clinical evidence demonstrates the essential role of peripheral mechanisms, mostly via studies that block the initially damaged peripheral circuitry. Clinical central mechanism studies use imaging to identify potentially self-sustaining infra-slow CNS oscillatory activity that may be unique to pNP patients.

Summary

While new preclinical evidence supports and expands upon the key role of central mechanisms in neuropathic pain, clinical evidence for an autonomous central mechanism remains relatively limited. Recent findings from both preclinical and clinical studies recapitulate the critical contribution of peripheral input to maintenance of neuropathic pain. Further clinical investigations on the possibility of standalone central contributions to pNP may be assisted by a reconsideration of the agreed terms or criteria for diagnosing the presence of central sensitization in humans.
Literatur
1.
Zurück zum Zitat • Jensen TS, et al. A new definition of neuropathic pain. Pain. 2011;152(10):2204–5. This paper describes the updated definition of neropathic pain and the rationale for the updated taxonomy PubMedCrossRef • Jensen TS, et al. A new definition of neuropathic pain. Pain. 2011;152(10):2204–5. This paper describes the updated definition of neropathic pain and the rationale for the updated taxonomy PubMedCrossRef
2.
Zurück zum Zitat Sheet PNF. National Institute of Neurological Disorders and Stroke (NINDS). 2005. Sheet PNF. National Institute of Neurological Disorders and Stroke (NINDS). 2005.
3.
4.
Zurück zum Zitat Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959–64.PubMedCrossRef Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959–64.PubMedCrossRef
5.
Zurück zum Zitat Bouhassira D, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36.PubMedCrossRef Bouhassira D, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36.PubMedCrossRef
6.
Zurück zum Zitat •• Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18(1):20–30. A key review article focusing on maladaptive structural plasticity in neural circuits of pain across animal models and human patients PubMedCrossRef •• Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18(1):20–30. A key review article focusing on maladaptive structural plasticity in neural circuits of pain across animal models and human patients PubMedCrossRef
8.
Zurück zum Zitat Rowbotham MC, et al. Cutaneous innervation density in the allodynic form of postherpetic neuralgia. Neurobiol Dis. 1996;3(3):205–14.PubMedCrossRef Rowbotham MC, et al. Cutaneous innervation density in the allodynic form of postherpetic neuralgia. Neurobiol Dis. 1996;3(3):205–14.PubMedCrossRef
9.
Zurück zum Zitat • Ochoa JL, et al. Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve. 2005;32(4):459–72. One of the early uses of microneurography to demonstrate spontaneous activity and hyperexcitability in C fibers in patients with painful neuropathy PubMedCrossRef • Ochoa JL, et al. Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve. 2005;32(4):459–72. One of the early uses of microneurography to demonstrate spontaneous activity and hyperexcitability in C fibers in patients with painful neuropathy PubMedCrossRef
11.
Zurück zum Zitat Ratte S, Prescott SA. Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy. Curr Opin Neurobiol. 2016;36:31–7.PubMedCrossRef Ratte S, Prescott SA. Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy. Curr Opin Neurobiol. 2016;36:31–7.PubMedCrossRef
12.
Zurück zum Zitat •• Latremoliere A, Woolf CJ. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. A comprehensive review on mechanisms contributing to central sensitization PubMedPubMedCentralCrossRef •• Latremoliere A, Woolf CJ. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. A comprehensive review on mechanisms contributing to central sensitization PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Novakovic SD, et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci. 1998;18(6):2174–87.PubMed Novakovic SD, et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci. 1998;18(6):2174–87.PubMed
14.
Zurück zum Zitat Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth. 2001;87(1):12–26.PubMedCrossRef Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth. 2001;87(1):12–26.PubMedCrossRef
15.
Zurück zum Zitat Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.PubMedPubMedCentralCrossRef Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.PubMedPubMedCentralCrossRef
16.
17.
Zurück zum Zitat McLachlan EM, et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363(6429):543–6.PubMedCrossRef McLachlan EM, et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363(6429):543–6.PubMedCrossRef
18.
Zurück zum Zitat Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature. 1992;355(6355):75–8.PubMedCrossRef Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature. 1992;355(6355):75–8.PubMedCrossRef
19.
Zurück zum Zitat Bennett DL, et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. J Neurosci. 2000;20(1):427–37.PubMed Bennett DL, et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. J Neurosci. 2000;20(1):427–37.PubMed
20.
Zurück zum Zitat Liu X, Chung K, Chung JM. Ectopic discharges and adrenergic sensitivity of sensory neurons after spinal nerve injury. Brain Res. 1999;849(1–2):244–7.PubMedCrossRef Liu X, Chung K, Chung JM. Ectopic discharges and adrenergic sensitivity of sensory neurons after spinal nerve injury. Brain Res. 1999;849(1–2):244–7.PubMedCrossRef
21.
22.
Zurück zum Zitat Carter GT, et al. Neuropathic pain in Charcot-Marie-Tooth disease. Arch Phys Med Rehabil. 1998;79(12):1560–4.PubMedCrossRef Carter GT, et al. Neuropathic pain in Charcot-Marie-Tooth disease. Arch Phys Med Rehabil. 1998;79(12):1560–4.PubMedCrossRef
23.
Zurück zum Zitat Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89(2):707–58.PubMedCrossRef Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89(2):707–58.PubMedCrossRef
24.
Zurück zum Zitat Study RE, Kral MG. Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain. 1996;65(2–3):235–42.PubMedCrossRef Study RE, Kral MG. Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain. 1996;65(2–3):235–42.PubMedCrossRef
25.
Zurück zum Zitat • Gracely RH, Lynch SA, Bennett GJ. Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain. 1992;51(2):175–94. A classic read. One of the first clinical reports demonstrating the the blockade of afferent input, even in patients with profound signs of central sensitization, temporarily abolishes neuropathic pain PubMedCrossRef • Gracely RH, Lynch SA, Bennett GJ. Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain. 1992;51(2):175–94. A classic read. One of the first clinical reports demonstrating the the blockade of afferent input, even in patients with profound signs of central sensitization, temporarily abolishes neuropathic pain PubMedCrossRef
26.
Zurück zum Zitat Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.PubMedCrossRef Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.PubMedCrossRef
27.
Zurück zum Zitat Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain. 2008;137(3):473–7.PubMedCrossRef Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain. 2008;137(3):473–7.PubMedCrossRef
28.
Zurück zum Zitat Fields HL, Rowbotham M, Baron R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis. 1998;5(4):209–27.PubMedCrossRef Fields HL, Rowbotham M, Baron R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis. 1998;5(4):209–27.PubMedCrossRef
30.
Zurück zum Zitat Sugimoto T, Bennett GJ, Kajander KC. Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain. 1990;42(2):205–13.PubMedCrossRef Sugimoto T, Bennett GJ, Kajander KC. Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain. 1990;42(2):205–13.PubMedCrossRef
31.
Zurück zum Zitat Flor H, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.PubMedCrossRef Flor H, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.PubMedCrossRef
32.
Zurück zum Zitat Apkarian AV, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410–5.PubMedCrossRef Apkarian AV, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410–5.PubMedCrossRef
33.
Zurück zum Zitat Colleoni M, Sacerdote P. Murine models of human neuropathic pain. Biochim Biophys Acta. 2010;1802(10):924–33.PubMedCrossRef Colleoni M, Sacerdote P. Murine models of human neuropathic pain. Biochim Biophys Acta. 2010;1802(10):924–33.PubMedCrossRef
34.
Zurück zum Zitat Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196(1):115–28.PubMedCrossRef Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196(1):115–28.PubMedCrossRef
35.
Zurück zum Zitat Liu M, Wood JN. The roles of sodium channels in nociception: implications for mechanisms of neuropathic pain. Pain Med. 2011;12(Suppl 3):S93–9.PubMedCrossRef Liu M, Wood JN. The roles of sodium channels in nociception: implications for mechanisms of neuropathic pain. Pain Med. 2011;12(Suppl 3):S93–9.PubMedCrossRef
36.
Zurück zum Zitat Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(1 Suppl 1):S3–S12.PubMedCrossRef Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(1 Suppl 1):S3–S12.PubMedCrossRef
38.
Zurück zum Zitat Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci. 2015;131:73–118.PubMedCrossRef Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci. 2015;131:73–118.PubMedCrossRef
39.
Zurück zum Zitat Alessandri-Haber N, et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci. 2004;24(18):4444–52.PubMedCrossRef Alessandri-Haber N, et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci. 2004;24(18):4444–52.PubMedCrossRef
40.
Zurück zum Zitat Mickle, A.D., A.J. Shepherd, and D.P. Mohapatra. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel). 2016; 9(4). Mickle, A.D., A.J. Shepherd, and D.P. Mohapatra. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel). 2016; 9(4).
41.
Zurück zum Zitat Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 2014;37(3):146–58.PubMedPubMedCentralCrossRef Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 2014;37(3):146–58.PubMedPubMedCentralCrossRef
43.
44.
Zurück zum Zitat Nystrom B, Hagbarth KE. Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett. 1981;27(2):211–6.PubMedCrossRef Nystrom B, Hagbarth KE. Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett. 1981;27(2):211–6.PubMedCrossRef
45.
Zurück zum Zitat Dib-Hajj SD, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain. 2005;128(Pt 8):1847–54.PubMedCrossRef Dib-Hajj SD, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain. 2005;128(Pt 8):1847–54.PubMedCrossRef
46.
Zurück zum Zitat Khaliq W, Alam S, Puri N. Topical lidocaine for the treatment of postherpetic neuralgia. Cochrane Database Syst Rev. 2007;2:CD004846. Khaliq W, Alam S, Puri N. Topical lidocaine for the treatment of postherpetic neuralgia. Cochrane Database Syst Rev. 2007;2:CD004846.
47.
Zurück zum Zitat Galer BS, et al. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. Pain. 1999;80(3):533–8.PubMedCrossRef Galer BS, et al. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. Pain. 1999;80(3):533–8.PubMedCrossRef
48.
Zurück zum Zitat • Haroutounian S, et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain. 2014;155(7):1272–9. A systematic assessment of the effect of afferent input blockade (with a local anesthetic) in two populations of peripheral neuropathic pain patients PubMedCrossRef • Haroutounian S, et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain. 2014;155(7):1272–9. A systematic assessment of the effect of afferent input blockade (with a local anesthetic) in two populations of peripheral neuropathic pain patients PubMedCrossRef
49.
Zurück zum Zitat Finnerup NB, et al. The sodium-channel blocker lidocaine in subanesthetic concentrations reduces spontaneous and evoked pain in human painful neuroma. Scandanavian Journal of Pain. 2015;8:45–6.CrossRef Finnerup NB, et al. The sodium-channel blocker lidocaine in subanesthetic concentrations reduces spontaneous and evoked pain in human painful neuroma. Scandanavian Journal of Pain. 2015;8:45–6.CrossRef
50.
Zurück zum Zitat Miclescu A, et al. Differential analgesic effects of subanesthetic concentrations of lidocaine on spontaneous and evoked pain in human painful neuroma: A randomized, double blind study. Scandanavian Journal of Pain. 2015;8:37–44.CrossRef Miclescu A, et al. Differential analgesic effects of subanesthetic concentrations of lidocaine on spontaneous and evoked pain in human painful neuroma: A randomized, double blind study. Scandanavian Journal of Pain. 2015;8:37–44.CrossRef
51.
Zurück zum Zitat Wijayasinghe N, et al. Ultrasound guided Intercostobrachial nerve blockade in patients with persistent pain after breast cancer surgery: a pilot study. Pain Physician. 2016;19(2):E309–18.PubMed Wijayasinghe N, et al. Ultrasound guided Intercostobrachial nerve blockade in patients with persistent pain after breast cancer surgery: a pilot study. Pain Physician. 2016;19(2):E309–18.PubMed
52.
Zurück zum Zitat Wijayasinghe N, et al. The role of peripheral afferents in persistent inguinal postherniorrhaphy pain: a randomized, double-blind, placebo-controlled, crossover trial of ultrasound-guided tender point blockade. Br J Anaesth. 2016;116(6):829–37.PubMedCrossRef Wijayasinghe N, et al. The role of peripheral afferents in persistent inguinal postherniorrhaphy pain: a randomized, double-blind, placebo-controlled, crossover trial of ultrasound-guided tender point blockade. Br J Anaesth. 2016;116(6):829–37.PubMedCrossRef
54.
55.
Zurück zum Zitat Waisbrod H, et al. Direct nerve stimulation for painful peripheral neuropathies. J Bone Joint Surg Br. 1985;67(3):470–2.PubMed Waisbrod H, et al. Direct nerve stimulation for painful peripheral neuropathies. J Bone Joint Surg Br. 1985;67(3):470–2.PubMed
56.
Zurück zum Zitat Eisenberg E, Waisbrod H, Gerbershagen HU. Long-term peripheral nerve stimulation for painful nerve injuries. Clin J Pain. 2004;20(3):143–6.PubMedCrossRef Eisenberg E, Waisbrod H, Gerbershagen HU. Long-term peripheral nerve stimulation for painful nerve injuries. Clin J Pain. 2004;20(3):143–6.PubMedCrossRef
57.
Zurück zum Zitat Yakovlev AE, Peterson AT. Peripheral nerve stimulation in treatment of intractable postherpetic neuralgia. Neuromodulation. 2007;10(4):373–5.PubMedCrossRef Yakovlev AE, Peterson AT. Peripheral nerve stimulation in treatment of intractable postherpetic neuralgia. Neuromodulation. 2007;10(4):373–5.PubMedCrossRef
58.
Zurück zum Zitat • Vaso A, et al. Peripheral nervous system origin of phantom limb pain. Pain. 2014;155(7):1384–91. Clinical demonstration of phantom pain alleviation by DRG blockade with local anesthetics, even in dilute concentrations. An important paper on the role of the dorsal root ganglion as a generator of post-amputation phantom and stump pain PubMedCrossRef • Vaso A, et al. Peripheral nervous system origin of phantom limb pain. Pain. 2014;155(7):1384–91. Clinical demonstration of phantom pain alleviation by DRG blockade with local anesthetics, even in dilute concentrations. An important paper on the role of the dorsal root ganglion as a generator of post-amputation phantom and stump pain PubMedCrossRef
59.
Zurück zum Zitat Liem L, et al. One-year outcomes of spinal cord stimulation of the dorsal root ganglion in the treatment of chronic neuropathic pain. Neuromodulation. 2015;18(1):41–8. discussion 48-9PubMedCrossRef Liem L, et al. One-year outcomes of spinal cord stimulation of the dorsal root ganglion in the treatment of chronic neuropathic pain. Neuromodulation. 2015;18(1):41–8. discussion 48-9PubMedCrossRef
60.
Zurück zum Zitat Eldabe S, et al. Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation. 2015;18(7):610–6. discussion 616-7PubMedCrossRef Eldabe S, et al. Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation. 2015;18(7):610–6. discussion 616-7PubMedCrossRef
61.
Zurück zum Zitat Liem L, et al. The dorsal root ganglion as a therapeutic target for chronic pain. Reg Anesth Pain Med. 2016;41(4):511–9.PubMedCrossRef Liem L, et al. The dorsal root ganglion as a therapeutic target for chronic pain. Reg Anesth Pain Med. 2016;41(4):511–9.PubMedCrossRef
62.
Zurück zum Zitat Choi SR, et al. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J Pain, 2016. Choi SR, et al. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J Pain, 2016.
63.
Zurück zum Zitat Hildebrand ME, et al. Potentiation of synaptic GluN2B NMDAR currents by Fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep. 2016;17(10):2753–65.PubMedCrossRef Hildebrand ME, et al. Potentiation of synaptic GluN2B NMDAR currents by Fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep. 2016;17(10):2753–65.PubMedCrossRef
64.
Zurück zum Zitat Kiyoyuki Y, et al. Leukotriene enhances NMDA-induced inward currents in dorsal horn neurons of the rat spinal cord after peripheral nerve injury. Mol Pain. 2015;11:53.PubMedPubMedCentralCrossRef Kiyoyuki Y, et al. Leukotriene enhances NMDA-induced inward currents in dorsal horn neurons of the rat spinal cord after peripheral nerve injury. Mol Pain. 2015;11:53.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wang HS, et al. Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury. Neurochem Int. 2016;99:9–15.PubMedCrossRef Wang HS, et al. Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury. Neurochem Int. 2016;99:9–15.PubMedCrossRef
67.
Zurück zum Zitat Yamamoto K, et al. Oxaliplatin administration increases expression of the voltage-dependent calcium channel alpha2delta-1 subunit in the rat spinal cord. J Pharmacol Sci. 2016;130(2):117–22.PubMedCrossRef Yamamoto K, et al. Oxaliplatin administration increases expression of the voltage-dependent calcium channel alpha2delta-1 subunit in the rat spinal cord. J Pharmacol Sci. 2016;130(2):117–22.PubMedCrossRef
68.
Zurück zum Zitat Guo W, et al. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade. Mol Pain. 2014;10:35.PubMedPubMedCentralCrossRef Guo W, et al. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade. Mol Pain. 2014;10:35.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Zhou LJ, et al. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun. 2011;25(2):322–34.PubMedCrossRef Zhou LJ, et al. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun. 2011;25(2):322–34.PubMedCrossRef
70.
71.
Zurück zum Zitat Ferrini F, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 2013;16(2):183–92.PubMedPubMedCentralCrossRef Ferrini F, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 2013;16(2):183–92.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat • Keller AF, et al. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain. 2007;3:27. An elegant demonstration of spontaneous activity of dorsal horn neurons (projecting to the parabrachial nucleus) in rodents with peripheral nerve injury and the role of microglia in spinal cord sensitization PubMedPubMedCentralCrossRef • Keller AF, et al. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain. 2007;3:27. An elegant demonstration of spontaneous activity of dorsal horn neurons (projecting to the parabrachial nucleus) in rodents with peripheral nerve injury and the role of microglia in spinal cord sensitization PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Coull JA, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21.PubMedCrossRef Coull JA, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21.PubMedCrossRef
74.
Zurück zum Zitat Imlach WL, et al. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci Rep. 2016;6:37104.PubMedPubMedCentralCrossRef Imlach WL, et al. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci Rep. 2016;6:37104.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Lyu C, et al. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain. 2015;11:44.PubMedPubMedCentralCrossRef Lyu C, et al. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain. 2015;11:44.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Xu T, et al. Epigenetic upregulation of CXCL12 expression mediates anti-tubulin chemotherapeutics-induced neuropathic pain. Pain, 2017. Xu T, et al. Epigenetic upregulation of CXCL12 expression mediates anti-tubulin chemotherapeutics-induced neuropathic pain. Pain, 2017.
77.
Zurück zum Zitat Xie F, et al. Early repeated administration of CXCR4 antagonist AMD3100 dose-dependently improves neuropathic pain in rats after L5 spinal nerve ligation. Neurochem Res. 2016;41(9):2289–99.PubMedCrossRef Xie F, et al. Early repeated administration of CXCR4 antagonist AMD3100 dose-dependently improves neuropathic pain in rats after L5 spinal nerve ligation. Neurochem Res. 2016;41(9):2289–99.PubMedCrossRef
78.
Zurück zum Zitat Luo X, et al. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol Pain. 2016;12 Luo X, et al. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol Pain. 2016;12
80.
Zurück zum Zitat • Sun S, et al. Role of interleukin-4, the chemokine CCL3 and its receptor CCR5 in neuropathic pain. Mol Immunol. 2016;77:184–92. This paper illustrates a neuronal/astrocytic interaction in the spinal cord following peripheral nerve injury wherein neuron-derived CXCL13 acts on astrocytes via CXCR5 to facilitate neuropathic pain PubMedCrossRef • Sun S, et al. Role of interleukin-4, the chemokine CCL3 and its receptor CCR5 in neuropathic pain. Mol Immunol. 2016;77:184–92. This paper illustrates a neuronal/astrocytic interaction in the spinal cord following peripheral nerve injury wherein neuron-derived CXCL13 acts on astrocytes via CXCR5 to facilitate neuropathic pain PubMedCrossRef
81.
Zurück zum Zitat Kwiatkowski K, et al. Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:68–78.CrossRef Kwiatkowski K, et al. Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:68–78.CrossRef
82.
Zurück zum Zitat Piotrowska A, et al. Maraviroc reduces neuropathic pain through polarization of microglia and astroglia—evidence from in vivo and in vitro studies. Neuropharmacology. 2016;108:207–19.PubMedCrossRef Piotrowska A, et al. Maraviroc reduces neuropathic pain through polarization of microglia and astroglia—evidence from in vivo and in vitro studies. Neuropharmacology. 2016;108:207–19.PubMedCrossRef
83.
Zurück zum Zitat Nazemi S, et al. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats. Clin Exp Pharmacol Physiol. 2015;42(7):772–9.PubMedCrossRef Nazemi S, et al. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats. Clin Exp Pharmacol Physiol. 2015;42(7):772–9.PubMedCrossRef
84.
Zurück zum Zitat Yamamoto Y, et al. Activated microglia contribute to convergent nociceptive inputs to spinal dorsal horn neurons and the development of neuropathic pain. Neurochem Res. 2015;40(5):1000–12.PubMedCrossRef Yamamoto Y, et al. Activated microglia contribute to convergent nociceptive inputs to spinal dorsal horn neurons and the development of neuropathic pain. Neurochem Res. 2015;40(5):1000–12.PubMedCrossRef
85.
Zurück zum Zitat Terayama R, et al. Peripheral nerve injury activates convergent nociceptive input to dorsal horn neurons from neighboring intact nerve. Exp Brain Res. 2015;233(4):1201–12.PubMedCrossRef Terayama R, et al. Peripheral nerve injury activates convergent nociceptive input to dorsal horn neurons from neighboring intact nerve. Exp Brain Res. 2015;233(4):1201–12.PubMedCrossRef
86.
Zurück zum Zitat Obata H, et al. Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res. 2010;1363:72–80.PubMedCrossRef Obata H, et al. Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res. 2010;1363:72–80.PubMedCrossRef
87.
Zurück zum Zitat Sun C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15(1):89–96.PubMed Sun C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15(1):89–96.PubMed
88.
Zurück zum Zitat Yao CY, et al. Interleukin-17A acts to maintain neuropathic pain through activation of CaMKII/CREB signaling in spinal neurons. Mol Neurobiol. 2016;53(6):3914–26.PubMedCrossRef Yao CY, et al. Interleukin-17A acts to maintain neuropathic pain through activation of CaMKII/CREB signaling in spinal neurons. Mol Neurobiol. 2016;53(6):3914–26.PubMedCrossRef
89.
Zurück zum Zitat Choi BM, et al. The time-course and RNA interference of TNF-alpha, IL-6, and IL-1beta expression on neuropathic pain induced by L5 spinal nerve transection in rats. Korean J Anesthesiol. 2015;68(2):159–69.PubMedPubMedCentralCrossRef Choi BM, et al. The time-course and RNA interference of TNF-alpha, IL-6, and IL-1beta expression on neuropathic pain induced by L5 spinal nerve transection in rats. Korean J Anesthesiol. 2015;68(2):159–69.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Masuda, T., et al., Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. 2016. 7: p. 12529. Masuda, T., et al., Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. 2016. 7: p. 12529.
91.
Zurück zum Zitat McGaraughty S, et al. P2X7-related modulation of pathological nociception in rats. Neuroscience. 2007;146(4):1817–28.PubMedCrossRef McGaraughty S, et al. P2X7-related modulation of pathological nociception in rats. Neuroscience. 2007;146(4):1817–28.PubMedCrossRef
92.
Zurück zum Zitat Koyanagi S, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102.PubMedPubMedCentralCrossRef Koyanagi S, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Cirillo G, et al. Purinergic modulation of spinal neuroglial maladaptive plasticity following peripheral nerve injury. Mol Neurobiol. 2015;52(3):1440–57.PubMedCrossRef Cirillo G, et al. Purinergic modulation of spinal neuroglial maladaptive plasticity following peripheral nerve injury. Mol Neurobiol. 2015;52(3):1440–57.PubMedCrossRef
94.
Zurück zum Zitat • Okubo M, et al. Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS One. 2016;11(4):e0153375. This study demonstrates that enhanced expression of M-CSF in spinal microglia and sensory afferents following nerve injury is sufficient to induce microgliosis and mechanical allodynia PubMedPubMedCentralCrossRef • Okubo M, et al. Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS One. 2016;11(4):e0153375. This study demonstrates that enhanced expression of M-CSF in spinal microglia and sensory afferents following nerve injury is sufficient to induce microgliosis and mechanical allodynia PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat • Gu N, et al. Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep. 2016;16(3):605–14. The authors use transgenic reporter mice in a spinal nerve transection model to show that injury-induced microgliosis in the spine results exclusively from local microglial proliferation, rather than infiltrating monocytes PubMedPubMedCentralCrossRef • Gu N, et al. Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep. 2016;16(3):605–14. The authors use transgenic reporter mice in a spinal nerve transection model to show that injury-induced microgliosis in the spine results exclusively from local microglial proliferation, rather than infiltrating monocytes PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Peng J, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun. 2016;7:12029.PubMedPubMedCentralCrossRef Peng J, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun. 2016;7:12029.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Patel R, Dickenson AH. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin. J Neurophysiol. 2016;116(1):159–70.PubMedPubMedCentralCrossRef Patel R, Dickenson AH. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin. J Neurophysiol. 2016;116(1):159–70.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat • Wang ZT, et al. Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res. 2015;1624:515–24. An increase in evoked responses to mechanical and cooling stimuli in ventral posterior thalamic neurons was reported in a rat spinal nerve ligation model, along with an increase in the rate of spontaneous firing, a modification proposed to contribute to ongoing pain PubMedCrossRef • Wang ZT, et al. Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res. 2015;1624:515–24. An increase in evoked responses to mechanical and cooling stimuli in ventral posterior thalamic neurons was reported in a rat spinal nerve ligation model, along with an increase in the rate of spontaneous firing, a modification proposed to contribute to ongoing pain PubMedCrossRef
99.
Zurück zum Zitat Masocha W. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. PeerJ. 2015;3:e1350.PubMedPubMedCentralCrossRef Masocha W. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. PeerJ. 2015;3:e1350.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Masocha W. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice. PeerJ. 2016;4:e2702.PubMedPubMedCentralCrossRef Masocha W. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice. PeerJ. 2016;4:e2702.PubMedPubMedCentralCrossRef
101.
102.
Zurück zum Zitat Taylor AM, et al. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J Neurosci Res, 2016. Taylor AM, et al. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J Neurosci Res, 2016.
103.
Zurück zum Zitat Ni HD, et al. Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res. 2016;94(1):50–61.PubMedCrossRef Ni HD, et al. Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res. 2016;94(1):50–61.PubMedCrossRef
104.
Zurück zum Zitat Liu, Y., et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2016. Liu, Y., et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2016.
105.
Zurück zum Zitat • Kim SK, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126(5):1983–97. Following sciatic nerve ligation, the authors detect a re-emergence of ‘immature’ mGluR5 signaling in astrocytes in the somatosensory cortex, a change thought to contribute to changes in synaptic plasticity and mechanical allodynia PubMedPubMedCentralCrossRef • Kim SK, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126(5):1983–97. Following sciatic nerve ligation, the authors detect a re-emergence of ‘immature’ mGluR5 signaling in astrocytes in the somatosensory cortex, a change thought to contribute to changes in synaptic plasticity and mechanical allodynia PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Sorkin LS, McAdoo DJ, Willis WD. Stimulation in the ventral posterior lateral nucleus of the primate thalamus leads to release of serotonin in the lumbar spinal cord. Brain Res. 1992;581(2):307–10.PubMedCrossRef Sorkin LS, McAdoo DJ, Willis WD. Stimulation in the ventral posterior lateral nucleus of the primate thalamus leads to release of serotonin in the lumbar spinal cord. Brain Res. 1992;581(2):307–10.PubMedCrossRef
107.
Zurück zum Zitat Avila-Rojas SH, et al. Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats. Brain Res. 2015;1622:377–85.PubMedCrossRef Avila-Rojas SH, et al. Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats. Brain Res. 2015;1622:377–85.PubMedCrossRef
108.
Zurück zum Zitat Sagalajev, B., et al., Descending antinociception induced by secondary somatosensory cortex stimulation in experimental neuropathy: role of the medullospinal serotonergic pathway. J Neurophysiol. 2017; p. jn.00836.2016. Sagalajev, B., et al., Descending antinociception induced by secondary somatosensory cortex stimulation in experimental neuropathy: role of the medullospinal serotonergic pathway. J Neurophysiol. 2017; p. jn.00836.2016.
109.
Zurück zum Zitat De Felice M, et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152(12):2701–9.PubMedPubMedCentralCrossRef De Felice M, et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152(12):2701–9.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Viisanen H, Pertovaara A. Antinociception by motor cortex stimulation in the neuropathic rat: does the locus coeruleus play a role? Exp Brain Res. 2010;201(2):283–96.PubMedCrossRef Viisanen H, Pertovaara A. Antinociception by motor cortex stimulation in the neuropathic rat: does the locus coeruleus play a role? Exp Brain Res. 2010;201(2):283–96.PubMedCrossRef
111.
Zurück zum Zitat Wei H, et al. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity. Pharmacol Res. 2014;90:58–66.PubMedCrossRef Wei H, et al. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity. Pharmacol Res. 2014;90:58–66.PubMedCrossRef
112.
Zurück zum Zitat Kimura M, et al. Impaired pain-evoked analgesia after nerve injury in rats reflects altered glutamate regulation in the locus coeruleus. Anesthesiology. 2015;123(4):899–908.PubMedCrossRef Kimura M, et al. Impaired pain-evoked analgesia after nerve injury in rats reflects altered glutamate regulation in the locus coeruleus. Anesthesiology. 2015;123(4):899–908.PubMedCrossRef
113.
Zurück zum Zitat Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.PubMedCrossRef Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.PubMedCrossRef
114.
Zurück zum Zitat Tuveson B, Leffler AS, Hansson P. Heterotopic noxious conditioning stimulation (HNCS) reduced the intensity of spontaneous pain, but not of allodynia in painful peripheral neuropathy. Eur J Pain. 2007;11(4):452–62.PubMedCrossRef Tuveson B, Leffler AS, Hansson P. Heterotopic noxious conditioning stimulation (HNCS) reduced the intensity of spontaneous pain, but not of allodynia in painful peripheral neuropathy. Eur J Pain. 2007;11(4):452–62.PubMedCrossRef
115.
Zurück zum Zitat Moisset X, Bouhassira D. Brain imaging of neuropathic pain. NeuroImage. 2007;37(Suppl 1):S80–8.PubMedCrossRef Moisset X, Bouhassira D. Brain imaging of neuropathic pain. NeuroImage. 2007;37(Suppl 1):S80–8.PubMedCrossRef
116.
Zurück zum Zitat Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci. 2009;66(3):375–90.PubMedCrossRef Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci. 2009;66(3):375–90.PubMedCrossRef
117.
Zurück zum Zitat Geha PY, et al. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain. 2007;128(1–2):88–100.PubMedCrossRef Geha PY, et al. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain. 2007;128(1–2):88–100.PubMedCrossRef
118.
Zurück zum Zitat Casseb RF, et al. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy. Neuroradiology. 2016;58(11):1103–8.PubMedCrossRef Casseb RF, et al. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy. Neuroradiology. 2016;58(11):1103–8.PubMedCrossRef
119.
Zurück zum Zitat Casey KL, Lorenz J, Minoshima S. Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol. 2003;184(Suppl 1):S80–8.PubMedCrossRef Casey KL, Lorenz J, Minoshima S. Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol. 2003;184(Suppl 1):S80–8.PubMedCrossRef
120.
Zurück zum Zitat Karl A, et al. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21(10):3609–18.PubMed Karl A, et al. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21(10):3609–18.PubMed
121.
Zurück zum Zitat Simons LE, et al. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain. 2014;155(9):1727–42.PubMedPubMedCentralCrossRef Simons LE, et al. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain. 2014;155(9):1727–42.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Apkarian AV, et al. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett. 2001;311(3):193–7.PubMedCrossRef Apkarian AV, et al. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett. 2001;311(3):193–7.PubMedCrossRef
123.
Zurück zum Zitat Zambreanu L, et al. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain. 2005;114(3):397–407.PubMedCrossRef Zambreanu L, et al. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain. 2005;114(3):397–407.PubMedCrossRef
124.
Zurück zum Zitat Alexander GM, et al. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain. 2005;116(3):213–9.PubMedCrossRef Alexander GM, et al. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain. 2005;116(3):213–9.PubMedCrossRef
125.
Zurück zum Zitat Kotani N, et al. Cerebrospinal fluid interleukin 8 concentrations and the subsequent development of postherpetic neuralgia. Am J Med. 2004;116(5):318–24.PubMedCrossRef Kotani N, et al. Cerebrospinal fluid interleukin 8 concentrations and the subsequent development of postherpetic neuralgia. Am J Med. 2004;116(5):318–24.PubMedCrossRef
126.
Zurück zum Zitat Backonja MM, et al. Altered cytokine levels in the blood and cerebrospinal fluid of chronic pain patients. J Neuroimmunol. 2008;195(1–2):157–63.PubMedCrossRef Backonja MM, et al. Altered cytokine levels in the blood and cerebrospinal fluid of chronic pain patients. J Neuroimmunol. 2008;195(1–2):157–63.PubMedCrossRef
127.
Zurück zum Zitat Alshelh Z, et al. Chronic neuropathic pain: it’s about the rhythm. J Neurosci. 2016;36(3):1008–18.PubMedCrossRef Alshelh Z, et al. Chronic neuropathic pain: it’s about the rhythm. J Neurosci. 2016;36(3):1008–18.PubMedCrossRef
128.
Zurück zum Zitat Neblett R, et al. The central sensitization inventory (CSI): establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J Pain. 2013;14(5):438–45.PubMedPubMedCentralCrossRef Neblett R, et al. The central sensitization inventory (CSI): establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J Pain. 2013;14(5):438–45.PubMedPubMedCentralCrossRef
Metadaten
Titel
Neuropathic Pain: Central vs. Peripheral Mechanisms
verfasst von
Kathleen Meacham
Andrew Shepherd
Durga P. Mohapatra
Simon Haroutounian
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Current Pain and Headache Reports / Ausgabe 6/2017
Print ISSN: 1531-3433
Elektronische ISSN: 1534-3081
DOI
https://doi.org/10.1007/s11916-017-0629-5

Weitere Artikel der Ausgabe 6/2017

Current Pain and Headache Reports 6/2017 Zur Ausgabe

Other Pain (N Vadivelu and A Kaye, Section Editors)

Indications for Opioid Antagonists

Chronic Daily Headache (SJ Wang, Section Editor)

Treatment Update of Chronic Migraine

Psychological and Behavioral Aspects of Headache and Pain (D Buse, Section Editor)

Conversion Disorder, Functional Neurological Symptom Disorder, and Chronic Pain: Comorbidity, Assessment, and Treatment

Anesthetic Techniques in Pain Management (D Wang, Section Editor)

Sphenopalatine Ganglion Block in the Management of Chronic Headaches

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.