Skip to main content
Erschienen in: Current Rheumatology Reports 5/2010

01.10.2010

Metabolic Myopathies

verfasst von: Salvatore DiMauro, Caterina Garone, Ali Naini

Erschienen in: Current Rheumatology Reports | Ausgabe 5/2010

Einloggen, um Zugang zu erhalten

Abstract

We consider recent developments in disorders affecting three areas of metabolism: glycogen, fatty acids, and the mitochondrial respiratory chain. Among the glycogenoses, new attention has been directed to defects of glycogen synthesis resulting in absence rather than excess of muscle glycogen (“aglycogenosis”). These include defects of glycogen synthetase and defects of glycogenin, the primer of glycogen synthesis. Considerable progress also has been made in our understanding of alterations of glycogen metabolism that result in polyglucosan storage. Among the disorders of lipid metabolism, mutations in the genes encoding two triglyceride lipases acting hand in hand cause severe generalized lipid storage myopathy, one associated with ichthyosis (Chanarin-Dorfman syndrome), the other dominated by juvenile-onset weakness. For the mitochondrial myopathies, we discuss the importance of homoplasmic mitochondrial DNA mutations and review the rapid progress made in our understanding of the coenzyme Q10 deficiencies, which are often treatable.
Literatur
1.
Zurück zum Zitat Kollberg G, Tulinius M, Gilljam T, et al.: Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med 2007, 357:1507–1514.CrossRefPubMed Kollberg G, Tulinius M, Gilljam T, et al.: Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med 2007, 357:1507–1514.CrossRefPubMed
2.
Zurück zum Zitat McCue ME, Valberg SJ, Miller MB, et al.: Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 2008, 91:458–466.CrossRefPubMed McCue ME, Valberg SJ, Miller MB, et al.: Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 2008, 91:458–466.CrossRefPubMed
3.
Zurück zum Zitat Pitcher J, Smythe C, Cohen P: Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur J Biochem 1988, 176:391–395.CrossRefPubMed Pitcher J, Smythe C, Cohen P: Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur J Biochem 1988, 176:391–395.CrossRefPubMed
4.
Zurück zum Zitat •• Moslemi A-R, Lindberg C, Nilsson J, et al.: Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med 2010, 362:1203–1210. These are the long-awaited first mutations in the muscle glycogenin gene and the second example of “glycogenosis 0” in human muscle. CrossRefPubMed •• Moslemi A-R, Lindberg C, Nilsson J, et al.: Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med 2010, 362:1203–1210. These are the long-awaited first mutations in the muscle glycogenin gene and the second example of “glycogenosis 0” in human muscle. CrossRefPubMed
5.
Zurück zum Zitat •• Stojkovic T, Vissing J, Petit F, et al.: Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med 2009, 361:425–427. This is a new glycolytic defect showing the “typical” syndrome of exercise intolerance, cramps, and recurrent myoglobinuria. CrossRefPubMed •• Stojkovic T, Vissing J, Petit F, et al.: Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med 2009, 361:425–427. This is a new glycolytic defect showing the “typical” syndrome of exercise intolerance, cramps, and recurrent myoglobinuria. CrossRefPubMed
6.
Zurück zum Zitat Sugie H, Kobayashi J, Sugie Y, et al.: Infantile muscle glycogen storage disease: phosphoglucomutase deficiency with decreased muscle and serum carnitine. Neurology 1988, 38:602–605.PubMed Sugie H, Kobayashi J, Sugie Y, et al.: Infantile muscle glycogen storage disease: phosphoglucomutase deficiency with decreased muscle and serum carnitine. Neurology 1988, 38:602–605.PubMed
7.
Zurück zum Zitat Nadaj-Pakleza AA, Vincitorio CM, Laforet P, et al.: Permanent muscle weakness in McArdle disease. Muscle Nerve 2009, 40:350–357.CrossRefPubMed Nadaj-Pakleza AA, Vincitorio CM, Laforet P, et al.: Permanent muscle weakness in McArdle disease. Muscle Nerve 2009, 40:350–357.CrossRefPubMed
8.
Zurück zum Zitat • Vissing J, Duno M, Schwartz M, Haller RG: Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain 2009, 132:1545–1552. This is an interesting genotype–phenotype association documenting that even a very small amount of residual enzyme activity ameliorates the clinical presentation. CrossRefPubMed • Vissing J, Duno M, Schwartz M, Haller RG: Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain 2009, 132:1545–1552. This is an interesting genotype–phenotype association documenting that even a very small amount of residual enzyme activity ameliorates the clinical presentation. CrossRefPubMed
9.
Zurück zum Zitat Orngreen MC, Jeppesen TD, Tvede Andersen S, et al.: Fat metabolism during exercise in patients with McArdle diseae. Neurology 2009, 72:718–724.CrossRefPubMed Orngreen MC, Jeppesen TD, Tvede Andersen S, et al.: Fat metabolism during exercise in patients with McArdle diseae. Neurology 2009, 72:718–724.CrossRefPubMed
10.
Zurück zum Zitat Quinlivan R, Beynon RJ: Pharmacological and nutritional treatment for McArdle’s disease (glycogen storage disease type V). Cochrane Database Syst Rev 2004, 3:CD003458. Quinlivan R, Beynon RJ: Pharmacological and nutritional treatment for McArdle’s disease (glycogen storage disease type V). Cochrane Database Syst Rev 2004, 3:CD003458.
11.
Zurück zum Zitat • van der Ploeg AT, Clemens PR, Corzo D, et al.: A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med 2010, 362:1396–1406. This is the first (but probably not the last) multicentric study of enzyme replacement therapy in glycogenosis type II. CrossRefPubMed • van der Ploeg AT, Clemens PR, Corzo D, et al.: A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med 2010, 362:1396–1406. This is the first (but probably not the last) multicentric study of enzyme replacement therapy in glycogenosis type II. CrossRefPubMed
12.
Zurück zum Zitat Kishnani PS, Goldenberg PC, DeArmey SL, et al.: Cross-reacting immunological material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010, 99:26–33.CrossRefPubMed Kishnani PS, Goldenberg PC, DeArmey SL, et al.: Cross-reacting immunological material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010, 99:26–33.CrossRefPubMed
13.
Zurück zum Zitat Mendelsohn NJ, Messinger YH, Rosenberg A, Kishnani P: Elimination of antibodies to recombinant enzyme in Pompe’s disease. N Engl J Med 2009, 360:194–195.CrossRefPubMed Mendelsohn NJ, Messinger YH, Rosenberg A, Kishnani P: Elimination of antibodies to recombinant enzyme in Pompe’s disease. N Engl J Med 2009, 360:194–195.CrossRefPubMed
14.
Zurück zum Zitat Parenti G: Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2009, 1:268–279.CrossRefPubMed Parenti G: Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2009, 1:268–279.CrossRefPubMed
15.
Zurück zum Zitat • Ramachandran N, Girard J-M, Turnbull J, Minassian B: The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 2009, 50(Suppl 5):29–36. This is an excellent critical review of Lafora’s disease and other progressive myoclonic epilepsies. CrossRefPubMed • Ramachandran N, Girard J-M, Turnbull J, Minassian B: The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 2009, 50(Suppl 5):29–36. This is an excellent critical review of Lafora’s disease and other progressive myoclonic epilepsies. CrossRefPubMed
16.
Zurück zum Zitat • Ohkuma A, Noguchi S, Sugie H, et al.: Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 2009, 39:333–342. This is an excellent systematic analysis of a large cohort of patients with LSM and a critical review of the subject. CrossRefPubMed • Ohkuma A, Noguchi S, Sugie H, et al.: Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 2009, 39:333–342. This is an excellent systematic analysis of a large cohort of patients with LSM and a critical review of the subject. CrossRefPubMed
17.
Zurück zum Zitat el-Hattab AW, Li F-Y, Shen J, et al.: Maternal systemic primary carnitine deficiency uncovered by newborn screening: clinical, biochemical, and molecular aspects. Genet Med 2010, 12:19–24.CrossRefPubMed el-Hattab AW, Li F-Y, Shen J, et al.: Maternal systemic primary carnitine deficiency uncovered by newborn screening: clinical, biochemical, and molecular aspects. Genet Med 2010, 12:19–24.CrossRefPubMed
18.
Zurück zum Zitat • Bruno C, Bertini E, Di Rocco M, et al.: Clinical and genetic characterization of Chanarin-Dorfman syndrome. Biochem Biophys Res Comm 2008, 369:1125–1128. This is an excellent review of Chanarin-Dorfman syndrome. CrossRefPubMed • Bruno C, Bertini E, Di Rocco M, et al.: Clinical and genetic characterization of Chanarin-Dorfman syndrome. Biochem Biophys Res Comm 2008, 369:1125–1128. This is an excellent review of Chanarin-Dorfman syndrome. CrossRefPubMed
19.
Zurück zum Zitat •• Akman HO, Davidzon G, Tanji K, et al.: Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord 2010, 20:397–402. This article discussed an interesting presymptomatic patient with an unusual mutation and a problematic disconnect between muscle biopsy and normal strength. CrossRefPubMed •• Akman HO, Davidzon G, Tanji K, et al.: Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord 2010, 20:397–402. This article discussed an interesting presymptomatic patient with an unusual mutation and a problematic disconnect between muscle biopsy and normal strength. CrossRefPubMed
20.
Zurück zum Zitat Gempel K, Topaloglu H, Talim B, et al.: The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007, 130:2037–2044.CrossRefPubMed Gempel K, Topaloglu H, Talim B, et al.: The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007, 130:2037–2044.CrossRefPubMed
21.
Zurück zum Zitat Liang W-C, Ohkuma A, Hayashi YK, et al.: ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 2009, 19:212–216.CrossRefPubMed Liang W-C, Ohkuma A, Hayashi YK, et al.: ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 2009, 19:212–216.CrossRefPubMed
22.
Zurück zum Zitat • Bonnefont J-P, Bastin J, Behin A, Djouadi F: Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med 2009, 360:838–840. This article discusses a convincing and promising therapeutic approach to an inborn error of metabolism. CrossRefPubMed • Bonnefont J-P, Bastin J, Behin A, Djouadi F: Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med 2009, 360:838–840. This article discusses a convincing and promising therapeutic approach to an inborn error of metabolism. CrossRefPubMed
23.
Zurück zum Zitat Roe CR, Yang B-Z, Brunengraber H, et al.: Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology 2008, 71:260–264.CrossRefPubMed Roe CR, Yang B-Z, Brunengraber H, et al.: Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology 2008, 71:260–264.CrossRefPubMed
24.
Zurück zum Zitat Schaefer AM, McFarland R, Blakely E, et al.: Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008, 63:35–39.CrossRefPubMed Schaefer AM, McFarland R, Blakely E, et al.: Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008, 63:35–39.CrossRefPubMed
25.
Zurück zum Zitat •• Elliott HR, Samuels DC, Eden JA, et al.: Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 2008, 83:254–260. This article presented astonishing results of a simple but long overdue survey of healthy newborns showing an unexpectedly high prevalence of mtDNA pathogenic mutations. CrossRefPubMed •• Elliott HR, Samuels DC, Eden JA, et al.: Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 2008, 83:254–260. This article presented astonishing results of a simple but long overdue survey of healthy newborns showing an unexpectedly high prevalence of mtDNA pathogenic mutations. CrossRefPubMed
26.
Zurück zum Zitat • Kaufmann P, Engelstad K, Wei Y, et al.: Protean phenotypic features of the A3243G mitochondrial DNA mutation. Arch Neurol 2009, 66:85–91. This study provided interesting documentation of the clinical spectrum of the common MELAS mutation in a large cohort of mutation carriers. CrossRefPubMed • Kaufmann P, Engelstad K, Wei Y, et al.: Protean phenotypic features of the A3243G mitochondrial DNA mutation. Arch Neurol 2009, 66:85–91. This study provided interesting documentation of the clinical spectrum of the common MELAS mutation in a large cohort of mutation carriers. CrossRefPubMed
27.
Zurück zum Zitat • Davidson MM, Walker WF, Hernandez-Rosa E: The m.3243A>G mtDNA mutation is pathogenic in an in vitro model of the human blood brain barrier. Mitochondrion 2009, 9:463–470. This article presented elegant in vitro modeling of the human BBB and a promising tool for studies of pathogenesis and therapeutic strategies. CrossRefPubMed • Davidson MM, Walker WF, Hernandez-Rosa E: The m.3243A>G mtDNA mutation is pathogenic in an in vitro model of the human blood brain barrier. Mitochondrion 2009, 9:463–470. This article presented elegant in vitro modeling of the human BBB and a promising tool for studies of pathogenesis and therapeutic strategies. CrossRefPubMed
28.
Zurück zum Zitat •• Horvath R, Kemp JP, Tuppen HAL, et al.: Molecular basis of infantile reversible cytochrome c oxidase deficiency. Brain 2009, 132:3165–3174. This was a fascinating example of the complex interaction between the nuclear and mitochondrial genomes. CrossRefPubMed •• Horvath R, Kemp JP, Tuppen HAL, et al.: Molecular basis of infantile reversible cytochrome c oxidase deficiency. Brain 2009, 132:3165–3174. This was a fascinating example of the complex interaction between the nuclear and mitochondrial genomes. CrossRefPubMed
29.
Zurück zum Zitat Hoefs SJG, Skjeldal OH, Rodenburg RJ, et al.: Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies. Mol Gen Metab 2010, 100:251–256.CrossRef Hoefs SJG, Skjeldal OH, Rodenburg RJ, et al.: Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies. Mol Gen Metab 2010, 100:251–256.CrossRef
30.
Zurück zum Zitat Lagier-Tourenne C, Tazir M, Lopez LC, et al.: ADSK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 2008, 82:661–672.CrossRefPubMed Lagier-Tourenne C, Tazir M, Lopez LC, et al.: ADSK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 2008, 82:661–672.CrossRefPubMed
31.
Zurück zum Zitat Mollet J, Delahodde A, Serre V, et al.: CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 2008, 82:623–630.CrossRefPubMed Mollet J, Delahodde A, Serre V, et al.: CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 2008, 82:623–630.CrossRefPubMed
32.
Zurück zum Zitat Duncan AJ, Bitner-Glindziez M, Meunier B, et al.: A nonsense mutation in COQ9 causes autosomal recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 2009, 84:558–566.CrossRefPubMed Duncan AJ, Bitner-Glindziez M, Meunier B, et al.: A nonsense mutation in COQ9 causes autosomal recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 2009, 84:558–566.CrossRefPubMed
33.
Zurück zum Zitat • Sacconi S, Trevisson E, Salviati L, et al.: Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 2010, 20:44–48. This was an interesting collaborative study documenting secondary CoQ 10 deficiency in patients with primary mitochondrial myopathy. CrossRefPubMed • Sacconi S, Trevisson E, Salviati L, et al.: Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 2010, 20:44–48. This was an interesting collaborative study documenting secondary CoQ 10 deficiency in patients with primary mitochondrial myopathy. CrossRefPubMed
34.
Zurück zum Zitat Cordero MD, Moreno-Fernandez AM, deMiguel M, et al.: Coenzyme Q10 distribution is altered in patients with fibromyalgia. Clin Biochem 2009, 42:732–735.CrossRefPubMed Cordero MD, Moreno-Fernandez AM, deMiguel M, et al.: Coenzyme Q10 distribution is altered in patients with fibromyalgia. Clin Biochem 2009, 42:732–735.CrossRefPubMed
35.
Zurück zum Zitat •• Massa V, Fernandez-Vizarra E, Alshahwan S, et al.: Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet 2008, 82:1281–1289. This study was a historical “first” showing that mutations affecting COX subunits directly do occur. CrossRefPubMed •• Massa V, Fernandez-Vizarra E, Alshahwan S, et al.: Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet 2008, 82:1281–1289. This study was a historical “first” showing that mutations affecting COX subunits directly do occur. CrossRefPubMed
36.
Zurück zum Zitat Sugiana C, Pagliarini DJ, McKenzie M, et al.: Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 2008, 83:468–478.CrossRefPubMed Sugiana C, Pagliarini DJ, McKenzie M, et al.: Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 2008, 83:468–478.CrossRefPubMed
37.
Zurück zum Zitat Saada A, Edvardson S, Rapaport M, et al.: C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 2008, 82:32–38.CrossRefPubMed Saada A, Edvardson S, Rapaport M, et al.: C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 2008, 82:32–38.CrossRefPubMed
38.
Zurück zum Zitat •• Weraarpachai W, Antonicka H, Sasarman F, et al.: Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 2009, 41:833–837. This was the first demonstration that “indirect hits” can affect isolated subunits of RC complexes. CrossRefPubMed •• Weraarpachai W, Antonicka H, Sasarman F, et al.: Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 2009, 41:833–837. This was the first demonstration that “indirect hits” can affect isolated subunits of RC complexes. CrossRefPubMed
39.
Zurück zum Zitat Cizkova A, Stranecky V, Mayr JA, et al.: TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalomyopathy. Nat Genet 2009, 40:1288–1290.CrossRef Cizkova A, Stranecky V, Mayr JA, et al.: TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalomyopathy. Nat Genet 2009, 40:1288–1290.CrossRef
40.
Zurück zum Zitat •• Yu-Wai-Man P, Griffiths PG, Gorman GS, et al.: Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010, 133:771–786. This was an important demonstration of the protean phenotypic expression of OPA1 mutations. CrossRefPubMed •• Yu-Wai-Man P, Griffiths PG, Gorman GS, et al.: Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010, 133:771–786. This was an important demonstration of the protean phenotypic expression of OPA1 mutations. CrossRefPubMed
41.
Zurück zum Zitat • Smits P, Smeitink JAM, van den Heuvel B: Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010 Apr 13 (Epub ahead of print). This is a comprehensive and comprehensible review of a complex subject. • Smits P, Smeitink JAM, van den Heuvel B: Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010 Apr 13 (Epub ahead of print). This is a comprehensive and comprehensible review of a complex subject.
42.
Zurück zum Zitat • Chen H, Chan DC: Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 2009, 18:R169–R176. This is a lucid review of mitochondrial dynamics gone awry. CrossRefPubMed • Chen H, Chan DC: Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 2009, 18:R169–R176. This is a lucid review of mitochondrial dynamics gone awry. CrossRefPubMed
44.
Zurück zum Zitat •• Wenz T, Diaz F, Spiegelman BM, Moraes CT: Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008, 8:249–255. This is an elegant demonstration of how enhancing mitochondrial biogenesis can benefit an RC defect. CrossRefPubMed •• Wenz T, Diaz F, Spiegelman BM, Moraes CT: Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008, 8:249–255. This is an elegant demonstration of how enhancing mitochondrial biogenesis can benefit an RC defect. CrossRefPubMed
45.
Zurück zum Zitat Wenz T, Rossi S, Rotundo RL, et al.: Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 2009, 106:20405–20410.CrossRefPubMed Wenz T, Rossi S, Rotundo RL, et al.: Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 2009, 106:20405–20410.CrossRefPubMed
46.
Zurück zum Zitat • Wenz T, Diaz F, Hernandez D, Moraes CT: Endurance exercise is protective for mice with mitochondrial myopathy. J Appl Physiol 2009, 106:1712–1719. This article explains why aerobic exercise is beneficial in mitochondrial myopathies. CrossRefPubMed • Wenz T, Diaz F, Hernandez D, Moraes CT: Endurance exercise is protective for mice with mitochondrial myopathy. J Appl Physiol 2009, 106:1712–1719. This article explains why aerobic exercise is beneficial in mitochondrial myopathies. CrossRefPubMed
47.
Zurück zum Zitat Civitarese AE, Carling S, Heilbronn LK, et al.: Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007, 4:e76.CrossRefPubMed Civitarese AE, Carling S, Heilbronn LK, et al.: Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007, 4:e76.CrossRefPubMed
48.
Zurück zum Zitat Mathew SS, Mao X, Keegan KA, et al.: Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: an in vivo 3.0 T 1H MRS imaging study. NMR Biomed 2009; 22:251–258.CrossRefPubMed Mathew SS, Mao X, Keegan KA, et al.: Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: an in vivo 3.0 T 1H MRS imaging study. NMR Biomed 2009; 22:251–258.CrossRefPubMed
49.
Zurück zum Zitat Myhill S, Booth NE, McLaren-Howard J: Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2009, 2:1–16.PubMed Myhill S, Booth NE, McLaren-Howard J: Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2009, 2:1–16.PubMed
Metadaten
Titel
Metabolic Myopathies
verfasst von
Salvatore DiMauro
Caterina Garone
Ali Naini
Publikationsdatum
01.10.2010
Verlag
Current Science Inc.
Erschienen in
Current Rheumatology Reports / Ausgabe 5/2010
Print ISSN: 1523-3774
Elektronische ISSN: 1534-6307
DOI
https://doi.org/10.1007/s11926-010-0119-9

Weitere Artikel der Ausgabe 5/2010

Current Rheumatology Reports 5/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.