Skip to main content
Erschienen in: Current Rheumatology Reports 2/2013

01.02.2013 | CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)

Genetics of Hyperuricemia and Gout: Implications for the Present and Future

verfasst von: Ronald L. George, Robert T. Keenan

Erschienen in: Current Rheumatology Reports | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Gout is the most common inflammatory arthropathy and occurs in the setting of elevated serum urate levels. Gout is also known to be associated with multiple comorbidities including cardiovascular disease and the metabolic syndrome. Recent advances in research have increased our understanding and improved our knowledge of the pathophysiology of gout. Genome-wide association studies have permitted the identification of several new and common genetic factors that contribute to hyperuricemia and gout. Most of these are involved with the renal urate transport system (the uric acid transportasome), generally considered the most influential regulator of serum urate homeostasis. Thus far, SCL22A12, SCL2A9, and GLUT9 have been found to have the greatest variation and most influence on serum urate levels. However, genetics are only a part of the explanation in the development of hyperuricemia and gout. As results have been mixed, the role of known urate influential genes in gout’s associated comorbidities remains unclear. Regardless, GWAS findings have expanded our understanding of the pathophysiology of hyperuricemia and gout, and will likely play a role in the development of future therapies and treatment of this ancient disease.
Literatur
1.
Zurück zum Zitat • Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41. Important epidemiological report regarding the prevalence of gout and hyperuricemia in the U.S.PubMedCrossRef • Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41. Important epidemiological report regarding the prevalence of gout and hyperuricemia in the U.S.PubMedCrossRef
2.
Zurück zum Zitat Oda M, Satta Y, Takenaka O, Takahata N. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol. 2002;19(5):640–53.PubMedCrossRef Oda M, Satta Y, Takenaka O, Takahata N. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol. 2002;19(5):640–53.PubMedCrossRef
3.
Zurück zum Zitat Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425(6957):516–21.PubMedCrossRef Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425(6957):516–21.PubMedCrossRef
4.
Zurück zum Zitat Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41(6):1183–90.PubMedCrossRef Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41(6):1183–90.PubMedCrossRef
5.
Zurück zum Zitat Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858–62.PubMedCrossRef Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858–62.PubMedCrossRef
6.
Zurück zum Zitat Stecher RM, Hersh AH, Solomon WM. The heredity of gout and its relationship to familial hyperuricemia. Ann Intern Med. 1949;31(4):595–614.PubMed Stecher RM, Hersh AH, Solomon WM. The heredity of gout and its relationship to familial hyperuricemia. Ann Intern Med. 1949;31(4):595–614.PubMed
7.
Zurück zum Zitat Reed DR, Price RA. X-linkage does not account for the absence of father-son similarity in plasma uric acid concentrations. Am J Med Genet. 2000;92(2):142–6.PubMedCrossRef Reed DR, Price RA. X-linkage does not account for the absence of father-son similarity in plasma uric acid concentrations. Am J Med Genet. 2000;92(2):142–6.PubMedCrossRef
8.
Zurück zum Zitat Emmerson BT, Nagel SL, Duffy DL, Martin NG. Genetic control of the renal clearance of urate: a study of twins. Ann Rheum Dis. 1992;51(3):375–7.PubMedCrossRef Emmerson BT, Nagel SL, Duffy DL, Martin NG. Genetic control of the renal clearance of urate: a study of twins. Ann Rheum Dis. 1992;51(3):375–7.PubMedCrossRef
9.
Zurück zum Zitat Wilk JB, Djousse L, Borecki I, Atwood LD, Hunt SC, Rich SS, et al. Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum Genet. 2000;106(3):355–9.PubMedCrossRef Wilk JB, Djousse L, Borecki I, Atwood LD, Hunt SC, Rich SS, et al. Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum Genet. 2000;106(3):355–9.PubMedCrossRef
10.
Zurück zum Zitat Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36:561–70.PubMedCrossRef Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36:561–70.PubMedCrossRef
11.
Zurück zum Zitat Kelley WN, Greene ML, Rosenbloom FM, Henderson JF, Seegmiller JE. Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med. 1969;70(1):155–206.PubMed Kelley WN, Greene ML, Rosenbloom FM, Henderson JF, Seegmiller JE. Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med. 1969;70(1):155–206.PubMed
12.
Zurück zum Zitat Bleyer AJ, Hart PS, Kmoch S. Hereditary interstitial kidney disease. Semin Nephrol. 2010;30(4):366–73.PubMedCrossRef Bleyer AJ, Hart PS, Kmoch S. Hereditary interstitial kidney disease. Semin Nephrol. 2010;30(4):366–73.PubMedCrossRef
13.
Zurück zum Zitat Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet'al P, Kalbacova M, et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009;85(2):204–13.PubMedCrossRef Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet'al P, Kalbacova M, et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009;85(2):204–13.PubMedCrossRef
14.
Zurück zum Zitat Mineo I, Kono N, Hara N, Shimizu T, Yamada Y, Kawachi M, et al. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII. N Engl J Med. 1987;317(2):75–80.PubMedCrossRef Mineo I, Kono N, Hara N, Shimizu T, Yamada Y, Kawachi M, et al. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII. N Engl J Med. 1987;317(2):75–80.PubMedCrossRef
15.
Zurück zum Zitat Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA, et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet. 2011;43(11):1127–30.PubMedCrossRef Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA, et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet. 2011;43(11):1127–30.PubMedCrossRef
16.
Zurück zum Zitat Vora S, DiMauro S, Spear D, Harker D, Danon MJ. Characterization of the enzymatic defect in late-onset muscle phosphofructokinase deficiency. New subtype of glycogen storage disease type VII. J Clin Invest. 1987;80(5):1479–85.PubMedCrossRef Vora S, DiMauro S, Spear D, Harker D, Danon MJ. Characterization of the enzymatic defect in late-onset muscle phosphofructokinase deficiency. New subtype of glycogen storage disease type VII. J Clin Invest. 1987;80(5):1479–85.PubMedCrossRef
17.
Zurück zum Zitat Davidson-Mundt A, Luder AS, Greene CL. Hyperuricemia in medium-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1992;120(3):444–6.PubMedCrossRef Davidson-Mundt A, Luder AS, Greene CL. Hyperuricemia in medium-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1992;120(3):444–6.PubMedCrossRef
18.
Zurück zum Zitat Sabina RL, Swain JL, Olanow CW, Bradley WG, Fishbein WN, DiMauro S, et al. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J Clin Invest. 1984;73(3):720–30.PubMedCrossRef Sabina RL, Swain JL, Olanow CW, Bradley WG, Fishbein WN, DiMauro S, et al. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J Clin Invest. 1984;73(3):720–30.PubMedCrossRef
19.
Zurück zum Zitat Bertorini TE, Shively V, Taylor B, Palmieri GM, Fox IH. ATP degradation products after ischemic exercise: hereditary lack of phosphorylase or carnitine palmityltransferase. Neurology. 1985;35(9):1355–7.PubMedCrossRef Bertorini TE, Shively V, Taylor B, Palmieri GM, Fox IH. ATP degradation products after ischemic exercise: hereditary lack of phosphorylase or carnitine palmityltransferase. Neurology. 1985;35(9):1355–7.PubMedCrossRef
20.
Zurück zum Zitat Merriman TR, Dalbeth N. The genetic basis of hyperuricaemia and gout. Joint Bone Spine. 2011;78(1):35–40.PubMedCrossRef Merriman TR, Dalbeth N. The genetic basis of hyperuricaemia and gout. Joint Bone Spine. 2011;78(1):35–40.PubMedCrossRef
21.
Zurück zum Zitat Endou H, Anzai N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):578–84.PubMedCrossRef Endou H, Anzai N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):578–84.PubMedCrossRef
22.
23.
Zurück zum Zitat Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.PubMedCrossRef Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.PubMedCrossRef
24.
Zurück zum Zitat Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol. 2012;16(1):89–95.PubMedCrossRef Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol. 2012;16(1):89–95.PubMedCrossRef
25.
Zurück zum Zitat Torres RJ, De Miguel E, Bailen R, Puig JG. Absence of SLC22A12/URAT1 Gene Mutations in Patients with Primary Gout. J Rheumatol. 2012;39(9):1901. Torres RJ, De Miguel E, Bailen R, Puig JG. Absence of SLC22A12/URAT1 Gene Mutations in Patients with Primary Gout. J Rheumatol. 2012;39(9):1901.
26.
Zurück zum Zitat Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.PubMed Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.PubMed
27.
Zurück zum Zitat Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004;15(1):164–73.PubMedCrossRef Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004;15(1):164–73.PubMedCrossRef
28.
Zurück zum Zitat Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol. 2005;20(7):886–90.PubMedCrossRef Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol. 2005;20(7):886–90.PubMedCrossRef
29.
Zurück zum Zitat Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant. 2011;26(7):2175–81. Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant. 2011;26(7):2175–81.
30.
Zurück zum Zitat Sebesta I, Stiburkova B, Bartl J, Ichida K, Hosoyamada M, Taylor J, et al. Diagnostic tests for primary renal hypouricemia. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1112–6. Sebesta I, Stiburkova B, Bartl J, Ichida K, Hosoyamada M, Taylor J, et al. Diagnostic tests for primary renal hypouricemia. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1112–6.
31.
Zurück zum Zitat Shima Y, Teruya K, Ohta H. Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci. 2006;79(23):2234–7.PubMedCrossRef Shima Y, Teruya K, Ohta H. Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci. 2006;79(23):2234–7.PubMedCrossRef
32.
Zurück zum Zitat Graessler J, Graessler A, Unger S, Kopprasch S, Tausche AK, Kuhlisch E, et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum. 2006;54(1):292–300.PubMedCrossRef Graessler J, Graessler A, Unger S, Kopprasch S, Tausche AK, Kuhlisch E, et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum. 2006;54(1):292–300.PubMedCrossRef
33.
Zurück zum Zitat Tu HP, Chen CJ, Lee CH, Tovosia S, Ko AM, Wang SJ, et al. The SLC22A12 gene is associated with gout in Han Chinese and Solomon Islanders. Ann Rheum Dis. 2010;69(6):1252–4.PubMedCrossRef Tu HP, Chen CJ, Lee CH, Tovosia S, Ko AM, Wang SJ, et al. The SLC22A12 gene is associated with gout in Han Chinese and Solomon Islanders. Ann Rheum Dis. 2010;69(6):1252–4.PubMedCrossRef
34.
Zurück zum Zitat Guan M, Zhang J, Chen Y, Liu W, Kong N, Zou H. High-resolution melting analysis for the rapid detection of an intronic single nucleotide polymorphism in SLC22A12 in male patients with primary gout in China. Scand J Rheumatol. 2009;38(4):276–81.PubMedCrossRef Guan M, Zhang J, Chen Y, Liu W, Kong N, Zou H. High-resolution melting analysis for the rapid detection of an intronic single nucleotide polymorphism in SLC22A12 in male patients with primary gout in China. Scand J Rheumatol. 2009;38(4):276–81.PubMedCrossRef
35.
Zurück zum Zitat Tin A, Woodward OM, Kao WH, Liu CT, Lu X, Nalls MA, et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet. 2011;20(20):4056–68.PubMedCrossRef Tin A, Woodward OM, Kao WH, Liu CT, Lu X, Nalls MA, et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet. 2011;20(20):4056–68.PubMedCrossRef
36.
Zurück zum Zitat Vazquez-Mellado J, Jimenez-Vaca AL, Cuevas-Covarrubias S, Alvarado-Romano V, Pozo-Molina G, Burgos-Vargas R. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford). 2007;46(2):215–9.CrossRef Vazquez-Mellado J, Jimenez-Vaca AL, Cuevas-Covarrubias S, Alvarado-Romano V, Pozo-Molina G, Burgos-Vargas R. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford). 2007;46(2):215–9.CrossRef
37.
Zurück zum Zitat • Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3(6):523–30. A GWAS report that does not support (non-causal) the role of urate (transporters) in gout-associated comorbidities such as cardiovascular disease the metabolic syndrome.PubMedCrossRef • Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3(6):523–30. A GWAS report that does not support (non-causal) the role of urate (transporters) in gout-associated comorbidities such as cardiovascular disease the metabolic syndrome.PubMedCrossRef
38.
Zurück zum Zitat Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab. 2009;297(4):E831–5.PubMedCrossRef Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab. 2009;297(4):E831–5.PubMedCrossRef
39.
Zurück zum Zitat Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3(11):e194.PubMedCrossRef Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3(11):e194.PubMedCrossRef
40.
Zurück zum Zitat Phay JE, Hussain HB, Moley JF. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000;66(2):217–20.PubMedCrossRef Phay JE, Hussain HB, Moley JF. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000;66(2):217–20.PubMedCrossRef
41.
Zurück zum Zitat •• Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42. The first to report the role of SLC2A9 (GLUT9) and its variants in the role of urate homeostasis.PubMedCrossRef •• Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42. The first to report the role of SLC2A9 (GLUT9) and its variants in the role of urate homeostasis.PubMedCrossRef
42.
Zurück zum Zitat Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82(1):139–49.PubMedCrossRef Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82(1):139–49.PubMedCrossRef
43.
Zurück zum Zitat •• Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–61. A very good meta-analysis of genes associated with hyperuricemia and gout. Additionally, the first to identify the SNPs in ABCG2 (ABCG2) and SLC17A3 (NPT4) that influence serum urate levels in blacks and whites.PubMedCrossRef •• Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–61. A very good meta-analysis of genes associated with hyperuricemia and gout. Additionally, the first to identify the SNPs in ABCG2 (ABCG2) and SLC17A3 (NPT4) that influence serum urate levels in blacks and whites.PubMedCrossRef
44.
Zurück zum Zitat Ishibashi K, Matsuzaki T, Takata K, Imai M. Identification of a new member of type I Na/phosphate co-transporter in the rat kidney. Nephron Physiol. 2003;94(1):10–8.CrossRef Ishibashi K, Matsuzaki T, Takata K, Imai M. Identification of a new member of type I Na/phosphate co-transporter in the rat kidney. Nephron Physiol. 2003;94(1):10–8.CrossRef
45.
Zurück zum Zitat Takenaka K, Morgan JA, Scheffer GL, Adachi M, Stewart CF, Sun D, et al. Substrate overlap between Mrp4 and Abcg2/Bcrp affects purine analogue drug cytotoxicity and tissue distribution. Cancer Res. 2007;67(14):6965–72.PubMedCrossRef Takenaka K, Morgan JA, Scheffer GL, Adachi M, Stewart CF, Sun D, et al. Substrate overlap between Mrp4 and Abcg2/Bcrp affects purine analogue drug cytotoxicity and tissue distribution. Cancer Res. 2007;67(14):6965–72.PubMedCrossRef
46.
Zurück zum Zitat Yamagishi K, Tanigawa T, Kitamura A, Kottgen A, Folsom AR, Iso H. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology (Oxford). 2010;49(8):1461–5.CrossRef Yamagishi K, Tanigawa T, Kitamura A, Kottgen A, Folsom AR, Iso H. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology (Oxford). 2010;49(8):1461–5.CrossRef
47.
Zurück zum Zitat Krishnan E, Lienesch D, Kwoh CK. Gout in ambulatory care settings in the United States. J Rheumatol. 2008;35(3):498–501.PubMed Krishnan E, Lienesch D, Kwoh CK. Gout in ambulatory care settings in the United States. J Rheumatol. 2008;35(3):498–501.PubMed
48.
Zurück zum Zitat Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1(5):5ra11.PubMedCrossRef Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1(5):5ra11.PubMedCrossRef
49.
Zurück zum Zitat • Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764. Insightful study regarding urate homeostasis, genetics, and the role of ABCG2 transporter in the gut.PubMedCrossRef • Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764. Insightful study regarding urate homeostasis, genetics, and the role of ABCG2 transporter in the gut.PubMedCrossRef
50.
Zurück zum Zitat Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338–42.PubMedCrossRef Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338–42.PubMedCrossRef
51.
Zurück zum Zitat Terkeltaub R. Gout. Novel therapies for treatment of gout and hyperuricemia. Arthritis Res Ther. 2009;11(4):236.PubMedCrossRef Terkeltaub R. Gout. Novel therapies for treatment of gout and hyperuricemia. Arthritis Res Ther. 2009;11(4):236.PubMedCrossRef
52.
Zurück zum Zitat Shah A, Keenan RT. Gout, hyperuricemia, and the risk of cardiovascular disease: cause and effect? Curr Rheumatol Rep. 2010;12(2):118–24.PubMedCrossRef Shah A, Keenan RT. Gout, hyperuricemia, and the risk of cardiovascular disease: cause and effect? Curr Rheumatol Rep. 2010;12(2):118–24.PubMedCrossRef
53.
Zurück zum Zitat Pillinger MH, Goldfarb DS, Keenan RT. Gout and its comorbidities. Bull NYU Hosp Jt Dis. 2010;68(3):199–203.PubMed Pillinger MH, Goldfarb DS, Keenan RT. Gout and its comorbidities. Bull NYU Hosp Jt Dis. 2010;68(3):199–203.PubMed
54.
Zurück zum Zitat McKeigue PM, Campbell H, Wild S, Vitart V, Hayward C, Rudan I, et al. Bayesian methods for instrumental variable analysis with genetic instruments ('Mendelian randomization'): example with urate transporter SLC2A9 as an instrumental variable for effect of urate levels on metabolic syndrome. Int J Epidemiol. 2010;39(3):907–18.PubMedCrossRef McKeigue PM, Campbell H, Wild S, Vitart V, Hayward C, Rudan I, et al. Bayesian methods for instrumental variable analysis with genetic instruments ('Mendelian randomization'): example with urate transporter SLC2A9 as an instrumental variable for effect of urate levels on metabolic syndrome. Int J Epidemiol. 2010;39(3):907–18.PubMedCrossRef
55.
Zurück zum Zitat Stark K, Reinhard W, Grassl M, Erdmann J, Schunkert H, Illig T, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease. PLoS One. 2009;4(11):e7729.PubMedCrossRef Stark K, Reinhard W, Grassl M, Erdmann J, Schunkert H, Illig T, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease. PLoS One. 2009;4(11):e7729.PubMedCrossRef
56.
Zurück zum Zitat • Parsa A, Brown E, Weir MR, Fink JC, Shuldiner AR, Mitchell BD, et al. Genotype-based changes in serum uric acid affect blood pressure. Kidney Int. 2012;81(5):502–7. A GWAS report supporting SLC2A9 (GLUT9) variants relationship between serum urate and hypertension.PubMedCrossRef • Parsa A, Brown E, Weir MR, Fink JC, Shuldiner AR, Mitchell BD, et al. Genotype-based changes in serum uric acid affect blood pressure. Kidney Int. 2012;81(5):502–7. A GWAS report supporting SLC2A9 (GLUT9) variants relationship between serum urate and hypertension.PubMedCrossRef
57.
Zurück zum Zitat • Shafiu M, Johnson RJ, Turner ST, Langaee T, Gong Y, Chapman AB, et al. Urate transporter gene SLC22A12 polymorphisms associated with obesity and metabolic syndrome in Caucasians with hypertension. Kidney Blood Press Res. 2012;35(6):477–82. A GWAS report supporting the role (causal) of SLC22A12 (URAT1) in gout associated comorbidities such as the metabolic syndrome.PubMedCrossRef • Shafiu M, Johnson RJ, Turner ST, Langaee T, Gong Y, Chapman AB, et al. Urate transporter gene SLC22A12 polymorphisms associated with obesity and metabolic syndrome in Caucasians with hypertension. Kidney Blood Press Res. 2012;35(6):477–82. A GWAS report supporting the role (causal) of SLC22A12 (URAT1) in gout associated comorbidities such as the metabolic syndrome.PubMedCrossRef
58.
Zurück zum Zitat Boger WP, Strickland SC. Probenecid (benemid); its uses and side-effects in 2,502 patients. AMA Arch Intern Med. 1955;95(1):83–92.PubMedCrossRef Boger WP, Strickland SC. Probenecid (benemid); its uses and side-effects in 2,502 patients. AMA Arch Intern Med. 1955;95(1):83–92.PubMedCrossRef
59.
Zurück zum Zitat Tan PK, Hyndman D, Liu S, Quart BD, Miner JN. Lesinurad (RDEA594), a novel investigation uricosuric agent for hyperuricemia and gout, blocks transport of uric acid induced by hydrochlorothiazide. Ann Rheum Dis. 2011;50 Suppl 3:187. Tan PK, Hyndman D, Liu S, Quart BD, Miner JN. Lesinurad (RDEA594), a novel investigation uricosuric agent for hyperuricemia and gout, blocks transport of uric acid induced by hydrochlorothiazide. Ann Rheum Dis. 2011;50 Suppl 3:187.
60.
Zurück zum Zitat Burns CM, Wortmann RL. Gout therapeutics: new drugs for an old disease. Lancet. 2011;377(9760):165–77. Burns CM, Wortmann RL. Gout therapeutics: new drugs for an old disease. Lancet. 2011;377(9760):165–77.
61.
Zurück zum Zitat Serafini TA, Emerling DE. Tranilast suppresses inflammation induced by monosodium urate (MSU) crystals in vivo. Ann Rheum Dis. 2010;69(Suppl3):664. Serafini TA, Emerling DE. Tranilast suppresses inflammation induced by monosodium urate (MSU) crystals in vivo. Ann Rheum Dis. 2010;69(Suppl3):664.
62.
Zurück zum Zitat Sundy JS, Kitt MM, Griffith SG, et al. The combination of tranilast with Allopurinol results in enhanced urate lowering. Arthritis Rheum. 2010;62(10 Supplement):S67. Sundy JS, Kitt MM, Griffith SG, et al. The combination of tranilast with Allopurinol results in enhanced urate lowering. Arthritis Rheum. 2010;62(10 Supplement):S67.
63.
Zurück zum Zitat Conn PM, Ulloa-Aguirre A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. Adv Pharmacol. 2011;62:109–41.PubMedCrossRef Conn PM, Ulloa-Aguirre A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. Adv Pharmacol. 2011;62:109–41.PubMedCrossRef
64.
Zurück zum Zitat Loo TW, Clarke DM. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J Biol Chem. 1997;272(2):709–12.PubMedCrossRef Loo TW, Clarke DM. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J Biol Chem. 1997;272(2):709–12.PubMedCrossRef
65.
Zurück zum Zitat Loo TW, Bartlett MC, Clarke DM. Rescue of folding defects in ABC transporters using pharmacological chaperones. J Bioenerg Biomembr. 2005;37(6):501–7.PubMedCrossRef Loo TW, Bartlett MC, Clarke DM. Rescue of folding defects in ABC transporters using pharmacological chaperones. J Bioenerg Biomembr. 2005;37(6):501–7.PubMedCrossRef
66.
Zurück zum Zitat Polgar O, Ierano C, Tamaki A, Stanley B, Ward Y, Xia D, et al. Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2. Biochemistry. 2010;49(10):2235–45.PubMedCrossRef Polgar O, Ierano C, Tamaki A, Stanley B, Ward Y, Xia D, et al. Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2. Biochemistry. 2010;49(10):2235–45.PubMedCrossRef
67.
Zurück zum Zitat Lang Jr PG. Severe hypersensitivity reactions to allopurinol. South Med J. 1979;72(11):1361–8.PubMedCrossRef Lang Jr PG. Severe hypersensitivity reactions to allopurinol. South Med J. 1979;72(11):1361–8.PubMedCrossRef
68.
Zurück zum Zitat Khanna D, Fuldeore MJ, Meissner BL, Dabbous OH, D'Souza AO. The incidence of Allopurinol hypersensitivity syndrome: a popluation perspective. Arthritis Rheum. 2008;60(10 (Supplement)):S542. Khanna D, Fuldeore MJ, Meissner BL, Dabbous OH, D'Souza AO. The incidence of Allopurinol hypersensitivity syndrome: a popluation perspective. Arthritis Rheum. 2008;60(10 (Supplement)):S542.
69.
Zurück zum Zitat Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102(11):4134–9.PubMedCrossRef Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102(11):4134–9.PubMedCrossRef
70.
Zurück zum Zitat Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19(9):704–9.PubMedCrossRef Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19(9):704–9.PubMedCrossRef
71.
Zurück zum Zitat Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18(2):99–107.PubMedCrossRef Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18(2):99–107.PubMedCrossRef
72.
Zurück zum Zitat Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al. American college of rheumatology guidelines for management of gout. Part 1: systematic Nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012;64(10):1431–46.CrossRef Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al. American college of rheumatology guidelines for management of gout. Part 1: systematic Nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012;64(10):1431–46.CrossRef
73.
Zurück zum Zitat Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40(4):430–6.PubMedCrossRef Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40(4):430–6.PubMedCrossRef
74.
Zurück zum Zitat Brandstatter A, Kiechl S, Kollerits B, Hunt SC, Heid IM, Coassin S, et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31(8):1662–7.PubMedCrossRef Brandstatter A, Kiechl S, Kollerits B, Hunt SC, Heid IM, Coassin S, et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31(8):1662–7.PubMedCrossRef
75.
Zurück zum Zitat Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island, and Caucasian case–control sample sets. Arthritis Rheum. 2009;60(11):3485–92.PubMedCrossRef Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island, and Caucasian case–control sample sets. Arthritis Rheum. 2009;60(11):3485–92.PubMedCrossRef
76.
Zurück zum Zitat Karns R, Zhang G, Sun G, Rao Indugula S, Cheng H, Havas-Augustin D, et al. Genome-wide association of serum uric acid concentration: replication of sequence variants in an island population of the Adriatic coast of Croatia. Ann Hum Genet. 2012;76(2):121–7.PubMedCrossRef Karns R, Zhang G, Sun G, Rao Indugula S, Cheng H, Havas-Augustin D, et al. Genome-wide association of serum uric acid concentration: replication of sequence variants in an island population of the Adriatic coast of Croatia. Ann Hum Genet. 2012;76(2):121–7.PubMedCrossRef
77.
Zurück zum Zitat Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, Baessler A, et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case–control study. PLoS One. 2008;3(4):e1948.PubMedCrossRef Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, Baessler A, et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case–control study. PLoS One. 2008;3(4):e1948.PubMedCrossRef
78.
Zurück zum Zitat Charles BA, Shriner D, Doumatey A, Chen G, Zhou J, Huang H, et al. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics. 2011;4:17.PubMedCrossRef Charles BA, Shriner D, Doumatey A, Chen G, Zhou J, Huang H, et al. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics. 2011;4:17.PubMedCrossRef
79.
Zurück zum Zitat McArdle PF, Parsa A, Chang YP, Weir MR, O'Connell JR, Mitchell BD, et al. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum. 2008;58(9):2874–81.PubMedCrossRef McArdle PF, Parsa A, Chang YP, Weir MR, O'Connell JR, Mitchell BD, et al. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum. 2008;58(9):2874–81.PubMedCrossRef
80.
Zurück zum Zitat Wang B, Miao Z, Liu S, Wang J, Zhou S, Han L, et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet. 2010;127(2):245–6.PubMedCrossRef Wang B, Miao Z, Liu S, Wang J, Zhou S, Han L, et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet. 2010;127(2):245–6.PubMedCrossRef
81.
Zurück zum Zitat Phipps-Green AJ, Hollis-Moffatt JE, Dalbeth N, Merriman ME, Topless R, Gow PJ, et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets. Hum Mol Genet. 2010;19(24):4813–9.PubMedCrossRef Phipps-Green AJ, Hollis-Moffatt JE, Dalbeth N, Merriman ME, Topless R, Gow PJ, et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets. Hum Mol Genet. 2010;19(24):4813–9.PubMedCrossRef
82.
Zurück zum Zitat Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5(10):e197.PubMedCrossRef Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5(10):e197.PubMedCrossRef
83.
Zurück zum Zitat Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;69(6):1232–4.PubMedCrossRef Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;69(6):1232–4.PubMedCrossRef
84.
Zurück zum Zitat van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, Caulfield MJ, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010;19(2):387–95.PubMedCrossRef van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, Caulfield MJ, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010;19(2):387–95.PubMedCrossRef
85.
Zurück zum Zitat Li C, Han L, Levin AM, Song H, Yan S, Wang Y, et al. Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese. J Med Genet. 2010;47(3):204–10.PubMedCrossRef Li C, Han L, Levin AM, Song H, Yan S, Wang Y, et al. Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese. J Med Genet. 2010;47(3):204–10.PubMedCrossRef
86.
Zurück zum Zitat Jang WC, Nam YH, Park SM, Ahn YC, Park SH, Choe JY, et al. T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects. Clin Chim Acta. 2008;398(1–2):140–4.PubMedCrossRef Jang WC, Nam YH, Park SM, Ahn YC, Park SH, Choe JY, et al. T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects. Clin Chim Acta. 2008;398(1–2):140–4.PubMedCrossRef
Metadaten
Titel
Genetics of Hyperuricemia and Gout: Implications for the Present and Future
verfasst von
Ronald L. George
Robert T. Keenan
Publikationsdatum
01.02.2013
Verlag
Current Science Inc.
Erschienen in
Current Rheumatology Reports / Ausgabe 2/2013
Print ISSN: 1523-3774
Elektronische ISSN: 1534-6307
DOI
https://doi.org/10.1007/s11926-012-0309-8

Weitere Artikel der Ausgabe 2/2013

Current Rheumatology Reports 2/2013 Zur Ausgabe

CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)

Racial and Gender Disparities Among Patients with Gout

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.