Skip to main content
Log in

Construction, Expression, and Characterization of a Single-Chain Variable Fragment Antibody Against 2,4-Dichlorophenoxyacetic Acid in the Hemolymph of Silkworm Larvae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A single-chain variable fragment antibody against herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D-scFv) has been successfully expressed in the hemolymph of silkworm larvae using a rapid Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Variable heavy- and light-chain domains were cloned directly from the cDNA of the hybridoma cell line 2C4 and assembled together with flexible peptide linker (Gly4Ser)3 between two domains. The yield of functional 2,4-D-scFv after purification was 640 μg per 30 ml of hemolymph, which is equivalent to 21.3 mg per liter of hemolymph. The characterization of 2,4-D-scFv using an indirect competitive enzyme-linked immunosorbent assay (icELISA) revealed that it has wide cross-reactivities against 2,4,5-trichlorophenoxyacetic acid (65.5%), 2,4-dichlorophenol (47.9%), and 2,4-dichlorobenzoic acid (26.0%), making it possible to apply 2,4-D-scFv to icELISA for detecting/determining 2,4-D and its metabolites. Judging from its cost and time requirements and its ease of handling, this BmNPV bacmid DNA expression system is more useful for expressing functional scFv than bacterial systems, which frequently require costly and time-consuming refolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABTS 2:

2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt

BmNPV:

Bombyx mori nucleopolyhedrovirus

bp:

Base pairs

CR:

Cross-reactivities

2,4-D:

2,4-Dichlorophenoxyacetic acid

2,4-D-scFv:

Single-chain variable fragment antibody against 2,4-D

ELISA:

Enzyme-linked immunosorbent assay

HMSS:

Honeybee melittin signal sequence

HRP:

Horseradish peroxidase

K D :

Dissociation constant

PBS:

Phosphate-buffered saline

scFv:

Single-chain variable fragment

VH:

Heavy chain variable region

VL:

Light-chain variable region

References

  1. Tuschl, H., & Schwab, C. (2003). Cytotoxic effects of the herbicide 2,4-dichlorophenoxyacetic acid in HepG2 cells. Food and Chemical Toxicology, 41, 385–393.

    Article  CAS  Google Scholar 

  2. Sulik, M., Kisielewski, W., Szynaka, B., Kemona, A., Sulkowska, M., & Baltaziak, M. (1998). Morphological changes in mitochondria and lysosomes of hepatocytes in acute intoxication with 2,4-dichlorophenoxyacetic acid (2,4-D). Materia Medica Polona, 30, 16–19.

    CAS  Google Scholar 

  3. Osaki, K., Mahler, J. F., Hasemann, J. K., Moomaw, C. R., Nicolette, M. L., & Nyska, A. (2001). Unique renal tubule changes induced in rats and mice by the peroxisome proliferators 2,4-dichlorophenoxyacetic acid (2,4-D) and WY-14643. Toxicologic Pathology, 29, 440–450.

    Article  Google Scholar 

  4. Charles, J. M., Hanley, T. R., Jr., Wilson, R. D., van Ravenzwaay, B., & Bus, J. S. (2001). Developmental toxicity studies in rats and rabbits on 2,4-dichlorophenoxyacetic acid and its forms. Toxicological Sciences, 60, 121–131.

    Article  CAS  Google Scholar 

  5. Barnekow, D. E., Hamburg, A. W., Puvanesarajah, V., & Guo, M. (2000). Metabolism of 2,4-dichlorophenoxyacetic acid in laying hens and lactating goats. Journal of Agricultural and Food Chemistry, 49, 156–163.

    Article  Google Scholar 

  6. Aydin, H., Ozdemir, N., & Uzunoren, N. (2005). Investigation of the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) in rat kidneys. Forensic Science International, 153, 53–57.

    Article  CAS  Google Scholar 

  7. Beeson, M. D., Driskell, W. J., & Barr, D. B. (1999). Isotope dilution high-performance liquid chromatography/tandem mass spectrometry method for quantifying urinary metabolites of atrazine, malathion, and 2,4-dichlorophenoxyacetic acid. Analytical Chemistry, 71, 3526–3530.

    Article  CAS  Google Scholar 

  8. Miura, N., Ogata, K., Sasaki, G., Uda, T., & Yamazoe, N. (1997). Detection of morphine in ppb range by using SPR (surface-plasmon-resonance) immunosensor. Chemistry Letters, 8, 713–714.

    Article  Google Scholar 

  9. Horacek, J., & Skladal, P. (2000). Effect of organic solvents on immunoassays of environmental pollutants studied using a piezoelectric biosensor. Analytica Chimica Acta, 412, 37–45.

    Article  CAS  Google Scholar 

  10. Green, T. M., Charles, P. T., & Anderson, G. P. (2002). Detection of 2,4,6-trinitrotoluene in seawater using a reversed-displacement immunosensor. Analytical Biochemistry, 310, 36–41.

    Article  CAS  Google Scholar 

  11. Taitt, C. R., Anderson, G. P., Lingerfelt, B. M., Feldstein, M. J., & Ligler, F. S. (2002). Nine-analyte detection using an array-based biosensor. Analytical Chemistry, 74, 6114–6120.

    Article  CAS  Google Scholar 

  12. Kim, S. J., Gobi, K. V., Tanaka, H., Shoyama, Y., & Miura, N. (2008). A simple and versatile self-assembled monolayer based surface plasmon resonance immunosensor for highly sensitive detection of 2,4-D from natural water resources. Sensors and Actuators B, 130, 281–289.

    Article  Google Scholar 

  13. Tanaka, H., Yan, S., Miura, N., & Shoyama, Y. (2003). Preparation of anti-2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid monoclonal antibodies. Cytotechnology, 42, 101–107.

    Article  Google Scholar 

  14. Rando, R. F., & Notkins, A. L. (1994). Production of human monoclonal antibodies against rabies virus. Current Topics in Microbiology and Immunology, 187, 195–205.

    CAS  Google Scholar 

  15. Kortt, A. A., Dolezal, Q., Power, B. E., & Hudson, P. J. (2001). Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomolecular Engineering, 18, 95–108.

    Article  CAS  Google Scholar 

  16. Penichet, M. L., & Morrison, S. L. (2001). Antibody-cytokine fusion proteins for the therapy of cancer. Journal of Immunological Methods, 248, 91–101.

    Article  CAS  Google Scholar 

  17. Adams, G. P., Shaller, C. C., Chappell, L. L., Wu, C., Horak, E. M., Simmons, H. H., et al. (2000). Delivery of the alpha-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nuclear Medicine and Biology, 27, 339–346.

    Article  CAS  Google Scholar 

  18. Maenda, S. (1989). Expression of foreign genes in insects using baculovirus vectors. Annual Review of Entomology, 34, 351–372.

    Article  Google Scholar 

  19. Motohashi, T., Shimojima, T., Fukunaga, T., Maenaka, K., & Park, E. Y. (2005). Efficient large-scale protein production of larvae and pupae of silkworm nuclear polyhedrovirus (BmNPV) bacmid system. Biochemical and Biophysical Research Communications, 326, 564–569.

    Article  CAS  Google Scholar 

  20. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Bosshard, H. R., & Pluckthun, A. (1997). Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. Journal of Immunological Methods, 201, 35–55.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L., & Goldberg, M. E. (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. Journal of Immunological Methods, 77, 305–319.

    Article  CAS  Google Scholar 

  23. Weiler, E. W., & Zenk, M. H. (1976). Radioimmunoassay for the detection of digoxin and related compounds in Digitalis lanata. Phytochemistry, 15, 1537–1545.

    Article  CAS  Google Scholar 

  24. Putalun, W., Taura, F., Qing, W., Matsushita, H., Tanaka, H., & Shoyama, Y. (2003). Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant Cell Report, 22, 344–349.

    Article  CAS  Google Scholar 

  25. Lu, Z., Masaki, T., Shoyama, Y., & Tanaka, H. (2006). Construction and expression of a single-chain fragment against pharmacologically active paeoniflorin in Escherichia coli, and its potential use in an enzyme-linked immunosorbent assay. Planta Medica, 72, 151–155.

    Article  CAS  Google Scholar 

  26. Pongkitwitoon, B., Sakamoto, S., Morinaga, O., Juengwatanatrakul, T., Shoyama, Y., Tanaka, H., et al. (2011). Single-chain variable fragment antibody against ginsenoside Re as an effective tool for the determination of ginsenosides in various ginsengs. Journal of Natural Medicines, 65, 24–30.

    Article  CAS  Google Scholar 

  27. Sakamoto, S., Taura, F., Putalun, W., Pongkitwitoon, B., Tsuchihashi, R., Morimoto, S., et al. (2009). Construction and expression of specificity-improved single-chain variable fragments against the bioactive naphthoquinone, plumbagin. Biological & Pharmaceutical Bulletin, 32, 434–439.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research in this paper was supported, in part, by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists. This work was also funded by a Grant in Aid from the Japan Society for the Promotion of Science Asian CORE Program of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, S., Pongkitwitoon, B., Nakamura, S. et al. Construction, Expression, and Characterization of a Single-Chain Variable Fragment Antibody Against 2,4-Dichlorophenoxyacetic Acid in the Hemolymph of Silkworm Larvae. Appl Biochem Biotechnol 164, 715–728 (2011). https://doi.org/10.1007/s12010-011-9168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9168-4

Keywords

Navigation