Skip to main content
Log in

The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Zeaxanthin (ZA), an important compound found in Lycium barbarum, shows various pharmacodynamic effects. In our present study, a high-fat, high-sucrose diet and streptozotocin (STZ)-induced diabetic rat model was used to investigate the antidiabetic activities of ZA. After a 4-week administration of 200 and 400 mg/kg of ZA and 100 mg/kg of metformin hydrochloride, various blood biochemical indexes were detected. ZA strongly normalized the reduced bodyweight and enhanced fasting blood glucose in diabetic rats. The positive data obtained from the oral glucose tolerance test further confirmed its antidiabetic effects. ZA displayed significant hypolipidemic activities indicated by its modulation of serum levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. The antidiabetic nephropathy of ZA was confirmed by its regulation of pathological kidney structures, urine levels of n-acetyl-β-d-glucosaminidase and albuminuria, and serum levels of urea nitrogen. ZA inhibited the serum levels of inflammatory factors including interleukin-2 (IL-2), IL-6, tumor necrosis factor-α, and nuclear factor kappa B, further confirming its renal protection. Moreover, the serum imbalances in superoxide dismutase, glutathione peroxidase, methane dicarboxylic aldehyde, and catalase were normalized by ZA, suggesting its antioxidant properties. Altogether, ZA produced hypoglycemic, hypolipidemic, and antidiabetic nephritic effects in a diet-STZ-induced diabetic rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053.

    Article  Google Scholar 

  2. You, Q., Chen, F., Wang, X., Luo, P. G., & Jiang, Y. (2011). Inhibitory effects of muscadine anthocyanins on alpha-glucosidase and pancreatic lipase activities. Journal of Agricultural and Food Chemistry, 59, 9506–9511.

    Article  CAS  Google Scholar 

  3. Kerner, W., & Bruckel, J. (2014). Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 122, 384–386.

    Article  CAS  Google Scholar 

  4. Zhu, K., Kakehi, T., Matsumoto, M., Iwata, K., Ibi, M., Ohshima, Y., et al. (2015). NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radical Biology & Medicine, 83, 21–30.

    Article  CAS  Google Scholar 

  5. Solis-Herrera, C., Triplitt, C. L., & Lynch, J. L. (2014). Nephropathy in youth and young adults with type 2 diabetes. Current Diabetes Reports, 14, 456.

    Article  Google Scholar 

  6. Fornoni, A., Ijaz, A., Tejada, T., & Lenz, O. (2008). Role of inflammation in diabetic nephropathy. Current Diabetes Reviews, 4, 10–17.

    Article  CAS  Google Scholar 

  7. Kania, D. S., Gonzalvo, J. D., & Weber, Z. A. (2011). Saxagliptin: a clinical review in the treatment of type 2 diabetes mellitus. Clinical Therapeutics, 33, 1005–1022.

    Article  CAS  Google Scholar 

  8. Scheen, A. (2007). Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes? Diabetes & Metabolism, 33, 3–12.

    Article  CAS  Google Scholar 

  9. Malviya, N., Jain, S., & Malviya, S. (2010). Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica, 67, 113–118.

    Google Scholar 

  10. Liu, C., Song, J., Teng, M., Zheng, X., Li, X., Tian, Y., et al. (2016). Antidiabetic and antinephritic activities of aqueous extract of Cordyceps militaris fruit body in diet-streptozotocin-induced diabetic Sprague Dawley rats. Oxidative Medicine and Cellular Longevity, 2016, 9685257.

    Google Scholar 

  11. Wang, J., Teng, L., Liu, Y., Hu, W., Chen, W., Hu, X., et al. (2016) Studies on the antidiabetic and antinephritic activities of Paecilomyces hepiali water extract in diet-streptozotocin-induced diabetic Sprague Dawley rats. 2016, 4368380

  12. Du, L., Liu, C., Teng, M., Meng, Q., Lu, J., Zhou, Y., et al. (2016). Anti-diabetic activities of Paecilomyces tenuipes N45 extract in alloxan-induced diabetic mice. Molecular Medicine Reports, 13, 1701–1708.

    CAS  Google Scholar 

  13. Zareisedehizadeh, S., Tan, C. H., & Koh, H. L. (2014). A review of botanical characteristics, traditional usage, chemical components, pharmacological activities, and safety of Pereskia bleo (Kunth) DC. Evidence-based Complementary and Alternative Medicine, 2014, 326107.

    Article  Google Scholar 

  14. Du, M., Hu, X., Kou, L., Zhang, B., & Zhang, C. (2016). Lycium barbarum Polysaccharide mediated the antidiabetic and antinephritic effects in diet-streptozotocin-induced diabetic Sprague Dawley rats via regulation of NF-kappaB. BioMed Research International, 2016, 3140290.

    Google Scholar 

  15. Prabhu, S., Rekha, P. D., Young, C. C., Hameed, A., Lin, S. Y., & Arun, A. B. (2013). Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties. Applied Biochemistry and Biotechnology, 171, 817–831.

    Article  CAS  Google Scholar 

  16. Chao, S. C., Vagaggini, T., Nien, C. W., Huang, S. C., & Lin, H. Y. (2015). Effects of lutein and zeaxanthin on LPS-induced secretion of IL-8 by uveal melanocytes and relevant signal pathways. Journal of Ophthalmology, 2015, 152854.

    Article  Google Scholar 

  17. Kowluru, R. A., Menon, B., & Gierhart, D. L. (2008). Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Investigative Ophthalmology & Visual Science, 49, 1645–1651.

    Article  Google Scholar 

  18. Dong, Y., Jing, T., Meng, Q., Liu, C., Hu, S., Ma, Y., et al. (2014) Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. 2014, 160980

  19. Dong, Y., Jing, T., Meng, Q., Liu, C., Hu, S., Ma, Y., et al. (2014). Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BioMed Research International, 2014, 160980–160991.

    Google Scholar 

  20. Song, J., Wang, Y., Liu, C., Huang, Y., He, L., Cai, X., et al. (2016). Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-kappaB pathway. Food & Function, 7, 2006–2015.

    Article  CAS  Google Scholar 

  21. Mahendran, G., Thamotharan, G., Sengottuvelu, S., & Bai, V. N. (2014). Anti-diabetic activity of Swertia corymbosa (Griseb.) Wight ex C.B. Clarke aerial parts extract in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 151, 1175–1183.

    Article  CAS  Google Scholar 

  22. Sheikh, B. A., Pari, L., Rathinam, A., & Chandramohan, R. (2015). Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie, 112, 57–65.

    Article  CAS  Google Scholar 

  23. Salihu Shinkafi, T., Bello, L., Wara Hassan, S., & Ali, S. (2015). An ethnobotanical survey of antidiabetic plants used by Hausa-Fulani tribes in Sokoto, Northwest Nigeria. Journal of Ethnopharmacology, 172, 91–99.

    Article  Google Scholar 

  24. Balamurugan, R., Vendan, S. E., Aravinthan, A., & Kim, J. H. (2015). Isolation and structural characterization of 2R, 3R taxifolin 3-O-rhamnoside from ethyl acetate extract of Hydnocarpus alpina and its hypoglycemic effect by attenuating hepatic key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Biochimie, 111, 70–81.

    Article  CAS  Google Scholar 

  25. Anand, P., Murali, K. Y., Tandon, V., Murthy, P. S., & Chandra, R. (2010). Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chemico-Biological Interactions, 186, 72–81.

    Article  CAS  Google Scholar 

  26. Sinzato, Y. K., Lima, P. H., Campos, K. E., Kiss, A. C., Rudge, M. V., & Damasceno, D. C. (2009). Neonatally-induced diabetes: lipid profile outcomes and oxidative stress status in adult rats. Revista da Associação Médica Brasileira, 55, 384–388.

    Article  Google Scholar 

  27. Park, J.-H., Park, N. S., Lee, S. M., & Park, E. (2011). Effect of Dongchunghacho rice on blood glucose level, lipid profile, and antioxidant metabolism in streptozotocin-induced diabetic rats. Food Science and Biotechnology, 20, 933–940.

    Article  CAS  Google Scholar 

  28. Yadav, H., Jain, S., & Sinha, P. R. (2007). Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 23, 62–68.

    Article  Google Scholar 

  29. Sebai, H., Selmi, S., Rtibi, K., Souli, A., Gharbi, N., & Sakly, M. (2013). Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids in Health and Disease, 12, 189.

    Article  Google Scholar 

  30. Tang, Z., Gao, H., Wang, S., Wen, S., & Qin, S. (2013). Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International Journal of Biological Macromolecules, 58, 186–189.

    Article  CAS  Google Scholar 

  31. Su, J., Wang, H., Ma, C., Lou, Z., Liu, C., Tanver Rahman, M., et al. (2015). Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice. Food & Function, 6, 2930–2938.

    Article  CAS  Google Scholar 

  32. Dong, Y., Jing, T., Meng, Q., Liu, C., Hu, S., Ma, Y., et al. (2014). Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BioMed Research International, 2014, 160980.

    Google Scholar 

  33. Ceriello, A., Novials, A., Ortega, E., Canivell, S., La Sala, L., Pujadas, G., et al. (2013). Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. Diabetes Care, 36, 4104–4108.

    Article  CAS  Google Scholar 

  34. Shang, G., Tang, X., Gao, P., Guo, F., Liu, H., Zhao, Z., et al. (2015). Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway. The Journal of Nutritional Biochemistry, 26, 596–606.

    Article  CAS  Google Scholar 

  35. Ellis, E. N., & Good, B. H. (1991). Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism, 40, 1016–1019.

    Article  CAS  Google Scholar 

  36. Zhang, S., Xin, H., Li, Y., Zhang, D., Shi, J., Yang, J., et al. (2013). Skimmin, a Coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evidence-based Complementary and Alternative Medicine, 2013, 819296–819306.

    Google Scholar 

  37. Hua, W., Huang, H. Z., Tan, L. T., Wan, J. M., Gui, H. B., Zhao, L., et al. (2015). CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PloS One, 10, e0127507.

    Article  Google Scholar 

  38. Nasr, A. Y., & Saleh, H. A. (2014). Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats. Cancer Cell International, 14, 92.

    Article  Google Scholar 

  39. Peters, T., Bloch, W., Wickenhauser, C., Tawadros, S., Oreshkova, T., Kess, D., et al. (2006). Terminal B cell differentiation is skewed by deregulated interleukin-6 secretion in beta2 integrin-deficient mice. Journal of Leukocyte Biology, 80, 599–607.

    Article  CAS  Google Scholar 

  40. Johnsen-Soriano, S., Sancho-Tello, M., Arnal, E., Navea, A., Cervera, E., Bosch-Morell, F., et al. (2010). IL-2 and IFN-gamma in the retina of diabetic rats. Graefe's Archive for Clinical and Experimental Ophthalmology, 248, 985–990.

    Article  CAS  Google Scholar 

  41. Zhang, S., Xin, H., Li, Y., Zhang, D., Shi, J., Yang, J., et al. (2013). Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evidence-based complementary and alternative medicine : eCAM, 2013, 819296.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Health and Family Planning Commission of Jiangsu Province in China (H201536), the Social Development Project of Zhenjiang Province in China (NO. SH2014028), Research fund for the Doctoral Program of Affiliated Hospital of Jiangsu University in China (NO. jdfyRC-2015004), and the Scientific Research Program of the Affiliated Hospital of Jiangsu University in China (NO. jdfyRC-2013003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhao Du.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

The animal experimental protocol was approved by the Animal Ethics Committee of Jiangsu University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, L., Du, M., Zhang, C. et al. The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Appl Biochem Biotechnol 182, 944–955 (2017). https://doi.org/10.1007/s12010-016-2372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2372-5

Keywords

Navigation