Skip to main content
Log in

Hair Tissue Mineral Analysis and Metabolic Syndrome

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Deficiency of minerals causes functional abnormality of enzymes, frequently resulting in metabolic disturbance. We investigated possible relationship between minerals and metabolic syndrome by analysis of hair tissue minerals. We selected 848 subjects older than 20 years of age at Ajou University Hospital from May 2004 to February 2007. We excluded the subjects who had cancers, steroid and thyroid medication, and incomplete record from the study. Finally, 343 subjects were eligible. We performed cross-sectional analysis for the relationship between minerals and metabolic syndrome. The contents of calcium, magnesium, and copper in the metabolic syndrome group were significantly lower than those of the normal group, whereas the amounts of sodium, potassium, and mercury in the metabolic syndrome group were significantly higher than those of the normal group. By dividing the subjects into quartile with the level of calcium, magnesium, and mercury concentrations, we carried out logistic regression analysis to study the subjects and found that the subjects in the third quartile of calcium and magnesium concentrations had significantly lower odds ratio (OR) of the metabolic syndrome compared with that of the lowest quartile group [OR = 0.30, confidence interval (CI) = 0.10–0.89; OR = 0.189, CI = 0.063–0.566] and that the subjects in the highest mercury quartile had significantly higher OR of the metabolic syndrome compared with that of the lowest mercury quartile group (OR = 7.35, CI = 1.73–31.1). As part of the metabolic syndrome, the optimal calcium and magnesium concentrations in hair tissue may reflect decreased risk of metabolic syndrome, whereas high mercury concentration in hair tissue may indicate increased risk of metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Byung Sung Kim (2002) Prevalence of metabolic syndrome for Koreans. Korean J Health Promot Dis Prev 2(1):17–25

    Google Scholar 

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Execute summary of the Third Report of the National Cholesterol Education Program(NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285(19):2486–96.

    Article  Google Scholar 

  3. Kim YT, Oh JM, Lee YK (2006) Korean National Health and Nutrition Examination Survey (KNHANES III) 2005. In Korea Center for Disease Control and Prevention. Seoul: Korean Ministry of Health and Welfare

    Google Scholar 

  4. Isomaa B, Almgren P, Tuomi T et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–9

    Article  PubMed  CAS  Google Scholar 

  5. Vaskonen T (2003) Dietary minerals and modification of cardiovascular risk factors. J Nutr Biochem 14(9):492–506

    Article  PubMed  CAS  Google Scholar 

  6. Chan S, Gerson B, Subramaniam S (1998) The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med 18(4):673–85

    PubMed  CAS  Google Scholar 

  7. Curry DL, Bennett LL, Grodsky GM (1968) Requirement for calcium ion in insulin secretion by the perfused rat pancrease. Am J Physiol 214:174–8

    PubMed  CAS  Google Scholar 

  8. Henquin JC, Ravier MA, Nenquin M, et al (2003) Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 33:742–50

    Article  PubMed  CAS  Google Scholar 

  9. Jing X, Li DQ, Olofsson CS, et al (2005) CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–54

    PubMed  CAS  Google Scholar 

  10. Suares A, Pulio N, Casla A, et al (1995) Impaired tyrosine kinase activity of muscle insulin receptors form hypomagnesemia rats. Diabetologia 38:1262–1270

    Article  Google Scholar 

  11. Levin AS, McClain CJ, Handwerger BS, et al (1983) Tissue zinc status of genetically diabetic and streptozicin induced diabetic mice. Am J Clin Nutr 37:382–386

    Google Scholar 

  12. Tang XH, Shay NF (2001) Zinc has an Insulin-like effects on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblast and adipocytes. J. Nutr. 131:1414–1420

    PubMed  CAS  Google Scholar 

  13. Sharon FS, Carla GT (2001) Dietary zinc supplementation attenuates hyperglycemia in db/ab mice. EBM 226:43–51

    Google Scholar 

  14. Meerarani P, Reiter G, Toborek M, et al (2003) Zinc modulates PPARγ signaling and activation of porcine endothelial cells. J. Nutr. 133:3058–3064

    PubMed  CAS  Google Scholar 

  15. Ohly P, Dohle C, Abel J, et al (2000) Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozicin. Diabetologia 43(8):1020–1030

    Article  PubMed  CAS  Google Scholar 

  16. Arthur BC (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17(2):109–115

    Google Scholar 

  17. Robert AD (2000) Zinc in relation to diabetes and oxidative disease. J. Nutr. 130:1509S–1511

    Google Scholar 

  18. Ozata M (2002) Increased oxidative stress and hypozincemia in male obesity. Clin Biochem 35(8):627–631

    Article  PubMed  CAS  Google Scholar 

  19. Aihara K, Nishi Y, Hatano S et al (1984) Zinc, copper, manganese and selenium metabolism in thyroid disease. Am J of Clin Nutr 40:26–35

    CAS  Google Scholar 

  20. Klevay LM, Bistrian BR, Fleming CR, et al (1987) Hair analysis in clinical and experimental medicine. Am J Clin Nutr 46(2)233–6

    PubMed  CAS  Google Scholar 

  21. Clinical Guidelines on the Identification (1998) Evaluation and treatment of overweight and obesity in adults—the evidence report. National Institutes of Health. Obes Res 6(suppl 2):51S–209S.

    Google Scholar 

  22. Miekeley N, de Fortes Carvalho LM, Porto da Silveira CL, et al (2001) Elemental anomalies in hair as indicators of endocrinologic pathologies and deficiencies in calcium and bone metabolism. J Trace Elem Med Biol 15:46–55

    Article  PubMed  CAS  Google Scholar 

  23. Pannacciulli N, Cantatore FP, Minenna A, et al (2001) C-reactive protein is independently associated with total body fat, central fat, and insulin resistance in adult women. Int J Obes Relat Metab Disord 25(10): 1416–20.

    Article  PubMed  CAS  Google Scholar 

  24. J. Lukasiak, I. Jablońska-Kaszewska, E. Dabrowska, et al (2000) Analysis of calcium, magnesium, and zinc levels in hair of healthy students. Screening of calcium or magnesium deficiency hazard. BioFactors 11:143–145

    Article  PubMed  CAS  Google Scholar 

  25. Williams PF, Caterson ID, Cooney GJ, et al (1990) High affinity insulin binding and insulin receptor-effector coupling: Modulation by Ca2+. Cell Calcium 11:547–56

    Article  PubMed  CAS  Google Scholar 

  26. Ojuka EO (2004) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63:275–8

    Article  PubMed  CAS  Google Scholar 

  27. Wright DC, Hucker KA, Holloszy JO, et al (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53:330–5

    Article  PubMed  CAS  Google Scholar 

  28. Zemel MB (2002) Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr 21:146S–51S

    PubMed  CAS  Google Scholar 

  29. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Aspects Med 24(1–3):27–37

    Article  PubMed  CAS  Google Scholar 

  30. Kurantsin-Mills J, Cassidy MM, Stafford RE, et al (1997) Marked alterations in circulating inflammatory cells during cardiomyopathy development in a magnesium-deficient rat model. Br J Nutr 78(5):845–55

    Article  PubMed  CAS  Google Scholar 

  31. Guerrero-Romero F, Rodriguez-Moran M (2002) Relationship between serum magnesium levels and C-reactive protein concentrations, in non-diabetic, non-hypertensive obese subjects. Int J Obes Relat Metab Disord 26(4):469–74

    Article  PubMed  CAS  Google Scholar 

  32. Manuel y Keenoy B, Moorkens G, Vertommen J, et al (2000) Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. J Am Coll Nutr 19(3):374–82

    PubMed  CAS  Google Scholar 

  33. Kumar BP, Shivakumar K (1997) Depressed antioxidant defense in rat heart in experimental magnesium deficiency. Implications for the pathogenesis of myocardial lesions. Biol Trace Elem Res 60(1–2):139–44

    Article  PubMed  CAS  Google Scholar 

  34. Freedman AM, Mak IT Stafford RE, Dickens BF, et al (1992) Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol 262(6 Pt 1):C1371–5

    PubMed  CAS  Google Scholar 

  35. Resnick LM (1992) Cellular calcium and magnesium metabolism in the pathophysiology and treatment of hypertension and related metabolic disorders. Am J Med 93:11S–20S

    Article  PubMed  CAS  Google Scholar 

  36. Barbagallo M, Novo S, Licata G, et al (1993) Diabetes, hypertension and atherosclerosis: pathophysiological role of intracellular ions. Int Angiol 12:365–70

    PubMed  CAS  Google Scholar 

  37. Paolisso G, Ravussin E (1995) Intracellular magnesium and insulin resistance: results in Pima Indians and Caucacians. J Clin Endocrinol Metab 80:1382–5

    Article  PubMed  CAS  Google Scholar 

  38. Resnick LM, Gupta RK, Gruenspan H, et al (1988) Intracellular free magnesium in hypertension: relation to peripheral insulin resistance. J Hypertens Suppl 6:S199–201

    Article  PubMed  CAS  Google Scholar 

  39. Hwang DL, Yen CF, Nadler JL (1993) Insulin increases intracellular magnesium transport in human platelets. J Clin Endocrinol Metab 76:549–53

    Article  PubMed  CAS  Google Scholar 

  40. Colditz GA, Manson JE, Stampfer MJ, et al (1992) Diet and risk of clinical diabetes in women. Am J Clin Nutr 55:1018–23

    PubMed  CAS  Google Scholar 

  41. Falkiewicz B, Dabrowska E, Lukasiak J, et al (2000) Zinc deficiency and normal contents of magnesium and calcium in metabolic X syndrome patients as assessed by the analysis of hair element concentrations. BioFactors 11:139–141

    Article  PubMed  CAS  Google Scholar 

  42. Jacob RA, Klevay LM, Logan GM Jr (1978) Hair as a biopsy material. V. Hair metal as an index of hepatic metal in rats: copper and zinc. Am J Clin Nutr 31(3):477–80

    PubMed  CAS  Google Scholar 

  43. Rivlin RS (1983) Misuse of hair analysis for nutritional assessment. Am J Med 75(3):489–93

    Article  PubMed  CAS  Google Scholar 

  44. Yakinici C, Pac A, Kucukbay F, et al (1997) Serum zinc, copper and magnesium levels in obese children. Acta Paediatr Jpn 39:339–341

    Google Scholar 

  45. Mateo MC, Bustamante JB, Cantalapiedra MA (1978) Serum zinc, copper and insulin in diabetes mellitus. Biomedicine 29:56–58

    PubMed  CAS  Google Scholar 

  46. Chen MD, Lin PY, Tsou CT, et al (1995) Selected metals status in patients with noninsulin-dependent diabetes mellitus. Biol Trace Elem Res 50(2):119–124

    Article  PubMed  Google Scholar 

  47. Taneja SK, Mandal R (2008) Assessment of minerals in obesity-related diseases in the Chandigarh (India) population. Biol Trace Elem Res 121(2):106–23

    Article  PubMed  CAS  Google Scholar 

  48. Lazaris YA, Kuts LG, Bavel’ski ZE (1974) Zinc and insulin content in pancreatic islets of rats after administration of hypoglycemic sulfonamides. Bull Exp Biol 77(6):647–9

    CAS  Google Scholar 

  49. Arquilla E, Thiene P, Brungman T, et al (1978) Effects of Zn on the conformation of antigenic determinants of insulin. Biochem J 175:289–297

    PubMed  CAS  Google Scholar 

  50. Kinlaw WB, Levine AS, Morley JE, et al (1983) Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 75:273–277

    Article  PubMed  CAS  Google Scholar 

  51. Anderson RA (1999) Chromium and Diabetes. Nutrition 15(9):720–22

    Article  PubMed  CAS  Google Scholar 

  52. Morris BW, Blumsohn A, Mac Neil S, et al (1999) Chromium homeostasis in patients with type II Diabetes. J Trace Elem Med Biol 13(1-2):57–61

    PubMed  CAS  Google Scholar 

  53. Ekmekcioglu C, Prohaska C, Pomazal K, et al (2001) Concentration of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res 79(3):205–19

    Article  PubMed  CAS  Google Scholar 

  54. Soo Ick Jang, Kyoung Kon Kim, Bok Gi Lee, et al (2002) A study on Hair Mineral Concentrations in Diabetic Patients. J Korean Acad Fam Med 23:1133–1140

    Google Scholar 

  55. Anderson RA, Cheng N, Bryden NA, et al (1997) Elevated intakes of supplemental chromium improve glucose insulin variables in individuals with type 2 diabetes. Diabetes 46:1786–91

    Article  PubMed  CAS  Google Scholar 

  56. Uusitupa MI, Mykkanen L, Siitonen O, et al (1992) Chromium supplementation in impaired glucose tolerance of elderly. British Journal of Nutrition 68:209–16

    Article  PubMed  CAS  Google Scholar 

  57. Ringstad J, Knutsen SF, Nilssen OR, et al (1993) A comparative study of serum selenium and vitamin E levels in a population of male risk drinkers and abstainers. A population-based matched-pair study. Biol Trace Elem Res 36(1):65–71

    Article  PubMed  CAS  Google Scholar 

  58. Stranges S, Marshall JR, Natarajan R, et al (2007) Effects of long-term selenium supplementation on the incidence of type 2 diabetes. Ann Intern Med 147:217–223

    PubMed  Google Scholar 

  59. Kishimoto T, Oguri T, Abe M, et al (1995) Inhibitory effect of methylmercury on migration and tube formation by cultured human vascular endothelial cells. Arch Toxicol 69(6)357–61

    Article  PubMed  CAS  Google Scholar 

  60. InSug O, Datar S, Koch CJ, et al (1997) Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124(3):211–24

    Article  PubMed  CAS  Google Scholar 

  61. Lu KP, Zhao SH, Wang DS (1990) The stimulatory effect of heavy metal cations on proliferation of aortic smooth muscle cells. Sci China B 33(3):303–10

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sat Byul Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.B., Choi, S.W. & Nam, A.Y. Hair Tissue Mineral Analysis and Metabolic Syndrome. Biol Trace Elem Res 130, 218–228 (2009). https://doi.org/10.1007/s12011-009-8336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8336-7

Keywords

Navigation