Skip to main content

Advertisement

Log in

Effect of Zinc Ions on Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells to Male Germ Cells and Some Germ Cell-Specific Gene Expression in Rams

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This is the first report to describe the effects of zinc (Zn) ions on the expression of germ cell (GC) genes from bone marrow-derived mesenchymal stem cells (BM-MSCs). Zn plays an important role in germinal epithelium maintenance, testosterone secretion, differentiation of GCs, and spermatogenesis. In addition, several studies have suggested that MSCs have the potential for differentiation into numerous cells types, including male GCs. In this study, we have treated passage-3 ram BM-MSCs with 0.14 μg/ml Zn sulfate (ZnSO4) for a period of 21 days with the intent to determine whether Zn treatment can stimulate MSCs to differentiate into male GCs in vitro. We also sought to determine the type of changes seen in MSCs by Zn treatment. Differentiation into male GCs was evaluated by the assessment of expressions of the following GC-specific markers: VASA, PIWIL2, OCT4, beta1 INTEGRIN (ITG b1), DAZL (by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR), and PGP 9.5 (by immunocytochemistry). Also studied were morphological characteristics and changes in alkaline phosphatase activity. Interestingly, Zn upregulated the expressions of VASA and ITG b1 but downregulated PIWIL2 and OCT4. DAZL and PGP 9.5 were not expressed in the treatment group. According to our results, Zn ions did not stimulate BM-MSCs to transdifferentiate into male GCs; however, it changed the expression of GC genes in BM-MSCs. It can be concluded that a possible mechanism by which Zn ions can increase male fertility is by regulation of the expression of testis GC-specific genes in the differentiation process and spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilabert ER, Ruiz E, Osorio C, Ortega E (1996) Effect of dietary zinc deficiency on reproductive function in male rats: biochemical and morphometric parameters. J Nutr Biochem 7:403–407

    Article  CAS  Google Scholar 

  2. Kumar N, Verma RP, Singh LP, Varshney VP, Dass RS (2006) Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus × Bos taurus) bulls. Reprod Nutr Dev 46(6):663–675. doi:10.1051/rnd:2006041r6605

    Article  PubMed  CAS  Google Scholar 

  3. McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130(5S Suppl):1437S–1446S

    PubMed  CAS  Google Scholar 

  4. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, Miura T (2009) Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci U S A 106(26):10859–10864. doi:10.1073/pnas.0900602106

    Article  PubMed  CAS  Google Scholar 

  5. Colagar AH, Marzony ET, Chaichi MJ (2009) Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 29(2):82–88. doi:10.1016/j.nutres.2008.11.007

    Article  PubMed  CAS  Google Scholar 

  6. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP (2002) Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil Steril 77(3):491–498

    Article  PubMed  Google Scholar 

  7. Ghasemi N, Babaei H, Azizallahi S, Kheradmand A (2009) Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality. Andrologia 41(4):222–228. doi:10.1111/j.1439-0272.2009.00920.x

    Article  PubMed  CAS  Google Scholar 

  8. Sorensen MB, Bergdahl IA, Hjollund NH, Bonde JP, Stoltenberg M, Ernst E (1999) Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol Hum Reprod 5(4):331–337

    Article  PubMed  CAS  Google Scholar 

  9. Martin GB, White CL, Markey CM, Blackberry MA (1994) Effects of dietary zinc deficiency on the reproductive system of young male sheep: testicular growth and the secretion of inhibin and testosterone. J Reprod Fertil 101(1):87–96

    Article  PubMed  CAS  Google Scholar 

  10. Zhang J, Hongbin Y, Gu X, Liang C, Li H, Wang J (2008) Changes in zinc, iron, copper contents in testis and epididymis of rats exposure to sodium fluoride and sulfur dioxide. J Herbal MedToxicol 2(1):1–5

    Google Scholar 

  11. Aitken RJ, Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev 1(1):15–24

    Article  PubMed  Google Scholar 

  12. Sorensen MB, Stoltenberg M, Henriksen K, Ernst E, Danscher G, Parvinen M (1998) Histochemical tracing of zinc ions in the rat testis. Mol Hum Reprod 4(5):423–428

    Article  PubMed  CAS  Google Scholar 

  13. Stoltenberg M, Sorensen MB, Danscher G, Juhl S, Andreasen A, Ernst E (1997) Autometallographic demonstration of zinc ions in rat sperm cells. Mol Hum Reprod 3(9):763–767

    Article  PubMed  CAS  Google Scholar 

  14. Karaca Z, Tanriverdi F, Kurtoglu S, Tokalioglu S, Unluhizarci K, Kelestimur F (2007) Pubertal arrest due to Zn deficiency: the effect of zinc supplementation. Hormones (Athens) 6(1):71–74

    Google Scholar 

  15. Hidiroglou M, Knipfel JE (1984) Zinc in mammalian sperm: a review. J Dairy Sci 67(6):1147–1156. doi:10.3168/jds.S0022-0302(84)81416-2

    Article  PubMed  CAS  Google Scholar 

  16. Hua J, Yu H, Dong W, Yang C, Gao Z, Lei A, Sun Y, Pan S, Wu Y, Dou Z (2009) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell 41(6):448–455. doi:10.1016/j.tice.2009.05.004

    Article  PubMed  CAS  Google Scholar 

  17. Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS (2009) Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod Biomed Online 19(1):99–105

    Article  PubMed  CAS  Google Scholar 

  18. Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L (2010) Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109(4):747–754. doi:10.1002/jcb.22453

    PubMed  CAS  Google Scholar 

  19. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86(7):654–663. doi:10.1038/labinvest.3700429

    Article  PubMed  CAS  Google Scholar 

  20. Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K (2007) Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 63:69–76

    PubMed  CAS  Google Scholar 

  21. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507–520

    CAS  Google Scholar 

  22. Mishra PJ, Glod JW, Banerjee D (2009) Mesenchymal stem cells: flip side of the coin. Cancer Res 69(4):1255–1258. doi:10.1158/0008-5472.CAN-08-3562

    Article  PubMed  CAS  Google Scholar 

  23. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736. doi:10.1038/nri2395

    Article  PubMed  CAS  Google Scholar 

  24. Eslaminejad MB, Eftekhari P (2007) Mesenchymal stem cells: in vitro differentiation among bone and cartilage cell lineages. Yakhteh Med J 9(3):158–169

    CAS  Google Scholar 

  25. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92

    PubMed  CAS  Google Scholar 

  26. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2(6):477–488

    Article  PubMed  CAS  Google Scholar 

  27. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836–842

    Article  PubMed  Google Scholar 

  28. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784. doi:10.1038/ncb0901-778ncb0901-778

    Article  PubMed  CAS  Google Scholar 

  29. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120. doi:10.1016/j.ymeth.2008.03.006

    Article  PubMed  CAS  Google Scholar 

  30. Fauza D (2004) Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol 18(6):877–891. doi:10.1016/j.bpobgyn.2004.07.001

    Article  PubMed  Google Scholar 

  31. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12(2):126–131. doi:10.1038/nrm3049

    Article  PubMed  CAS  Google Scholar 

  32. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568–584. doi:10.1016/j.biocel.2003.11.001

    Article  PubMed  CAS  Google Scholar 

  33. Krampera M, Franchini M, Pizzolo G, Aprili G (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5(3):120–129. doi:10.2450/2007.0029-07

    PubMed  Google Scholar 

  34. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402–1416. doi:10.1016/j.exphem.2005.07.003

    Article  PubMed  CAS  Google Scholar 

  35. Kassem M (2004) Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6(4):369–374. doi:10.1089/clo.2004.6.369

    Article  PubMed  CAS  Google Scholar 

  36. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675. doi:10.1182/blood-2003-05-16702003-05-1670

    Article  PubMed  CAS  Google Scholar 

  37. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122(2):303–315. doi:10.1016/j.cell.2005.06.031

    Article  PubMed  CAS  Google Scholar 

  38. Wang T, Zhang JC, Chen Y, Xiao PG, Yang MS (2007) Effect of zinc ion on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts. J Trace Elem Med Biol 21(2):84–91. doi:10.1016/j.jtemb.2007.01.002

    Article  PubMed  Google Scholar 

  39. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367. doi:10.1038/nrg2091

    Article  PubMed  CAS  Google Scholar 

  40. Eslaminejad MB, Taghiyar L (2010) Study of the structure of canine mesenchymal stem cell osteogenic culture. Anat Histol Embryol 39(5):446–455. doi:10.1111/j.1439-0264.2010.01013.x

    PubMed  CAS  Google Scholar 

  41. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  PubMed  CAS  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  43. Lacham-Kaplan O (2004) In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 128(2):147–152. doi:10.1530/rep.1.00220128/2/147

    Article  PubMed  Google Scholar 

  44. McLaren A, Durcova-Hills G (2001) Germ cells and pluripotent stem cells in the mouse. Reprod Fertil Dev 13(7–8):661–664

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez-Sosa JR, Dobson H, Hahnel A (2006) Isolation and transplantation of spermatogonia in sheep. Theriogenology 66(9):2091–2103. doi:10.1016/j.theriogenology.2006.03.039

    Article  PubMed  Google Scholar 

  46. Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73(12):1531–1540. doi:10.1002/mrd.20529

    Article  PubMed  CAS  Google Scholar 

  47. Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 100(20):11457–11462. doi:10.1073/pnas.19328261001932826100

    Article  PubMed  CAS  Google Scholar 

  48. Linher K, Dyce P, Li J (2009) Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells. PLoS One 4(12):e8263. doi:10.1371/journal.pone.0008263

    Article  PubMed  Google Scholar 

  49. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427(6970):148–154. doi:10.1038/nature02247nature02247

    Article  PubMed  CAS  Google Scholar 

  50. Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69(6):908–917. doi:10.1002/jnr.10365

    Article  PubMed  CAS  Google Scholar 

  51. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A 97(17):9585–9590. doi:10.1073/pnas.160274797160274797

    Article  PubMed  CAS  Google Scholar 

  52. Ovitt CE, Scholer HR (1998) The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 4(11):1021–1031

    Article  PubMed  CAS  Google Scholar 

  53. Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418(6895):293–300. doi:10.1038/nature00927nature00927

    Article  PubMed  CAS  Google Scholar 

  54. Lee JH, Engel W, Nayernia K (2006) Stem cell protein Piwil2 modulates expression of murine spermatogonial stem cell expressed genes. Mol Reprod Dev 73(2):173–179. doi:10.1002/mrd.20391

    Article  PubMed  CAS  Google Scholar 

  55. Anderson R, Fassler R, Georges-Labouesse E, Hynes RO, Bader BL, Kreidberg JA, Schaible K, Heasman J, Wylie C (1999) Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development 126(8):1655–1664

    PubMed  CAS  Google Scholar 

  56. Cousins RJ (1998) A role of zinc in the regulation of gene expression. Proc Nutr Soc 57(2):307–311

    Article  PubMed  CAS  Google Scholar 

  57. Jackson KA, Valentine RA, Coneyworth LJ, Mathers JC, Ford D (2008) Mechanisms of mammalian zinc-regulated gene expression. Biochem Soc Trans 36(Pt 6):1262–1266. doi:10.1042/BST0361262

    Article  PubMed  CAS  Google Scholar 

  58. Haase H, Mazzatti DJ, White A, Ibs KH, Engelhardt G, Hebel S, Powell JR, Rink L (2007) Differential gene expression after zinc supplementation and deprivation in human leukocyte subsets. Mol Med 13(7–8):362–370. doi:10.2119/2007-00049.Haase

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Urmia University (Faculty of Veterinary Medicine) and Royan Institute (grant number 160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roozali Batavani or Mohamadreza Baghaban Eslaminejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemzadeh-Hasankolai, M., Batavani, R., Eslaminejad, M.B. et al. Effect of Zinc Ions on Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells to Male Germ Cells and Some Germ Cell-Specific Gene Expression in Rams. Biol Trace Elem Res 150, 137–146 (2012). https://doi.org/10.1007/s12011-012-9484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9484-8

Keywords

Navigation