Skip to main content
Log in

Effect of Apoptosis-Inducing Antitumor Agents on Endocardial Endothelial Cells

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Chemotherapy is one of the common treatment modalities for cancer. Some of the antineoplastic drugs have, however, been found to be toxic for vascular endothelium, resulting in complications such as endothelial dysfunction, thromboembolism, heart failure, and cardiomyopathy. In this study, we investigated the cytotoxic effect of widely used antitumor agents doxorubicin, camptothecin, and thapsigargin on primary and immortalized porcine endocardial endothelial cells and compared with the effects of these agents on human umbilical vein endothelial cells, human aortic endothelial cells, and EA.hy926 cells. Our study revealed that endocardial endothelial cells are relatively resistant to apoptosis induced by these drugs. Interestingly, our study indicates that response to antitumor agents greatly differs depending on the site of origin of endothelial cells. Doxorubicin, camptothecin, and thapsigargin induce mitochondrial-dependent cell death following loss of mitochondrial membrane potential (MMP) in vascular endothelial cells, with subsequent increase in sub-G0 population. In endocardial endothelial cells, there was no MMP loss; and only cell cycle arrest either at G1 or S phases was observed when the cells were treated with doxorubicin, camptothecin, and thapsigargin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hong, R. A., Iimura, T., Sumida, K. N., & Eager, R. M. (2010). Cardio-oncology/onco-cardiology. Clinical Cardiology, 33, 733–737.

    Article  PubMed  Google Scholar 

  2. Hunley, T. E., Iwasaki, S., Homma, T., & Kon, V. (1995). Nitric oxide and endothelin in pathophysiological settings. Pediatric Nephrology, 9, 235–244.

    Article  PubMed  CAS  Google Scholar 

  3. Baudin, B., Beneteau-Burnat, B., & Giboudeau, J. (1996). Cytotoxicity of amiodarone in cultured human endothelial cells. Cardiovascular Drugs and Therapy, 10, 557–560.

    Article  PubMed  CAS  Google Scholar 

  4. Brutsaert, D. L., Fransen, P., Andries, L. J., De Keulenaer, G. W., & Sys, S. U. (1998). Cardiac endothelium and myocardial function. Cardiovascular Research, 38, 281–290.

    Article  PubMed  CAS  Google Scholar 

  5. Kuruvilla, L., & Kartha, C. C. (2003). Molecular mechanisms in endothelial regulation of cardiac function. Molecular and Cellular Biochemistry, 253, 113–123.

    Article  PubMed  CAS  Google Scholar 

  6. Tonini, T., Gabellini, C., Bagella, L., D’Andrilli, G., Masciullo, V., Romano, G., et al. (2004). pRb2/p130 decreases sensitivity to apoptosis induced by camptothecin and doxorubicin but not by taxol. Clinical Cancer Research, 10, 8085–8093.

    Article  PubMed  CAS  Google Scholar 

  7. Yamamoto, N., Watanabe, H., Kakizawa, H., Hirano, M., Kobayashi, A., & Ohno, R. (1995). A study on thapsigargin-induced calcium ion and cation influx pathways in vascular endothelial cells. Biochimica et Biophysica Acta, 1266, 157–162.

    Article  PubMed  Google Scholar 

  8. Baudin, B., Bruneel, A., Bosselut, N., & Vaubourdolle, M. (2007). A protocol for isolation and culture of human umbilical vein endothelial cells. Nature Protocols, 2, 481–485.

    Article  PubMed  CAS  Google Scholar 

  9. Andries, L. J., Kaluza, G., De Keulenaer, G. W., Mebazaa, A., Brutsaert, D. L., & Sys, S. U. (1996). Endocardial endothelial dysfunction and heart failure. Journal of Cardiac Failure, 2, S195–S202.

    Article  PubMed  CAS  Google Scholar 

  10. Kuruvilla, L., Santhosh Kumar, T. R., & Kartha, C. C. (2007). Immortalization and characterization of porcine ventricular endocardial endothelial cells. Endothelium, 14, 35–43.

    Article  PubMed  CAS  Google Scholar 

  11. Aird, W. C. (2007). Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circulation Research, 100, 158–173.

    Article  PubMed  CAS  Google Scholar 

  12. Kwok, J. C., & Richardson, D. R. (2003). Anthracyclines induce accumulation of iron in ferritin in myocardial and neoplastic cells: Inhibition of the ferritin iron mobilization pathway. Molecular Pharmacology, 63, 849–861.

    Article  PubMed  CAS  Google Scholar 

  13. Lock, R. B., & Stribinskiene, L. (1996). Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Research, 56, 4006–4012.

    PubMed  CAS  Google Scholar 

  14. Walker, P. R., Smith, C., Youdale, T., Leblanc, J., Whitfield, J. F., & Sikorska, M. (1991). Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Research, 51, 1078–1085.

    PubMed  CAS  Google Scholar 

  15. Mailloux, A., Grenet, K., Bruneel, A., Beneteau-Burnat, B., Vaubourdolle, M., & Baudin, B. (2001). Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. European Journal of Cell Biology, 80, 442–449.

    Article  PubMed  CAS  Google Scholar 

  16. Schimmel, K. J., Richel, D. J., van den Brink, R. B., & Guchelaar, H. J. (2004). Cardiotoxicity of cytotoxic drugs. Cancer Treatment Reviews, 30, 181–191.

    Article  PubMed  CAS  Google Scholar 

  17. Zunina, F., Gambetta, R., & Di Marco, A. (1975). The inhibition in vitro of DNA polymerase and RNA polymerases by daunomycin and adriamycin. Biochemical Pharmacology, 24, 309–311.

    Article  PubMed  CAS  Google Scholar 

  18. Iwamoto, Y., Hansen, I. L., Porter, T. H., & Folkers, K. (1974). Inhibition of coenzyme Q10-enzymes, succinoxidase and NADH-oxidase, by adriamycin and other quinones having antitumor activity. Biochemical and Biophysical Research Communications, 58, 633–638.

    Article  PubMed  CAS  Google Scholar 

  19. Corna, G., Santambrogio, P., Minotti, G., & Cairo, G. (2004). Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: Role of reactive oxygen species and ferritin. Journal of Biological Chemistry, 279, 13738–13745.

    Article  PubMed  CAS  Google Scholar 

  20. L’Ecuyer, T., Sanjeev, S., Thomas, R., Novak, R., Das, L., Campbell, W., et al. (2006). DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1273–H1280.

    Article  PubMed  Google Scholar 

  21. Pantazis, P. (1995). Preclinical studies of water-insoluble camptothecin congeners: Cytotoxicity, development of resistance, and combination treatments. Clinical Cancer Research, 1, 1235–1244.

    PubMed  CAS  Google Scholar 

  22. Ryan, A. J., Squires, S., Strutt, H. L., & Johnson, R. T. (1991). Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Research, 19, 3295–3300.

    Article  PubMed  CAS  Google Scholar 

  23. Hsiang, Y. H., Liu, L. F., Wall, M. E., Wani, M. C., Nicholas, A. W., Manikumar, G., et al. (1989). DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. Cancer Research, 49, 4385–4389.

    PubMed  CAS  Google Scholar 

  24. O’Leary, J. J., Shapiro, R. L., Ren, C. J., Chuang, N., Cohen, H. W., & Potmesil, M. (1999). Antiangiogenic effects of camptothecin analogues 9-amino-20(S)-camptothecin, topotecan, and CPT-11 studied in the mouse cornea model. Clinical Cancer Research, 5, 181–187.

    PubMed  Google Scholar 

  25. Feng, X. Q., You, Y., Xiao, J., & Zou, P. (2006). Thapsigargin-induced apoptosis of K562 cells and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 14, 25–30.

    PubMed  CAS  Google Scholar 

  26. Crow, M. T., Mani, K., Nam, Y. J., & Kitsis, R. N. (2004). The mitochondrial death pathway and cardiac myocyte apoptosis. Circulation Research, 95, 957–970.

    Article  PubMed  CAS  Google Scholar 

  27. Sarkar, S., Chawla-Sarkar, M., Young, D., Nishiyama, K., Rayborn, M. E., Hollyfield, J. G., et al. (2004). Myocardial cell death and regeneration during progression of cardiac hypertrophy to heart failure. Journal of Biological Chemistry, 279, 52630–52642.

    Article  PubMed  CAS  Google Scholar 

  28. Bernecker, O. Y., Huq, F., Heist, E. K., Podesser, B. K., & Hajjar, R. J. (2003). Apoptosis in heart failure and the senescent heart. Cardiovascular Toxicology, 3, 183–190.

    Article  PubMed  CAS  Google Scholar 

  29. Umansky, S. R., & Tomei, L. D. (2003). Apoptosis in the myocardium: Much is still expected. Expert Opinion on Therapeutic Targets, 7, 61–69.

    Article  PubMed  Google Scholar 

  30. deBlois, D., Orlov, S. N., & Hamet, P. (2001). Apoptosis in cardiovascular remodeling–effect of medication. Cardiovascular Drugs and Therapy, 15, 539–545.

    Article  PubMed  CAS  Google Scholar 

  31. Mercie, P., Garnier, O., Lascoste, L., Renard, M., Closse, C., Durrieu, F., et al. (2000). Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features. Apoptosis, 5, 403–411.

    Article  PubMed  CAS  Google Scholar 

  32. Kuruvilla, L., Nair, R. R., Umashankar, P. R., Lal, A. V., & Kartha, C. C. (2007). Endocardial endothelial cells stimulate proliferation and collagen synthesis of cardiac fibroblasts. Cell Biochemistry and Biophysics, 47, 65–72.

    PubMed  CAS  Google Scholar 

  33. Fransen, P., Hendrickx, J., Brutsaert, D. L., & Sys, S. U. (2001). Distribution and role of Na(+)/K(+) ATPase in endocardial endothelium. Cardiovascular Research, 52, 487–499.

    Article  PubMed  CAS  Google Scholar 

  34. Flens, M. J., Zaman, G. J., van der Valk, P., Izquierdo, M. A., Schroeijers, A. B., Scheffer, G. L., et al. (1996). Tissue distribution of the multidrug resistance protein. American Journal of Pathology, 148, 1237–1247.

    PubMed  CAS  Google Scholar 

  35. Cordon-Cardo, C., O’Brien, J. P., Boccia, J., Casals, D., Bertino, J. R., & Melamed, M. R. (1990). Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. Journal of Histochemistry and Cytochemistry, 38, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  36. Sugawara, I., Kataoka, I., Morishita, Y., Hamada, H., Tsuruo, T., Itoyama, S., et al. (1988). Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Research, 48, 1926–1929.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sathish Kumar Maney and Ann Mary Johnson were supported with Junior Research Fellowship from Council of Scientific Industrial Research, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Kartha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maney, S.K., Johnson, A.M., Sampath Kumar, A. et al. Effect of Apoptosis-Inducing Antitumor Agents on Endocardial Endothelial Cells. Cardiovasc Toxicol 11, 253–262 (2011). https://doi.org/10.1007/s12012-011-9119-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9119-x

Keywords

Navigation