Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2015

01.01.2015

Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure

verfasst von: Christina M. Perez, Mehdi S. Hazari, Aimen K. Farraj

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome of these reflexes, particularly with respect to the cardiovascular system. Modulation of autonomic neural input to the heart and vasculature following direct activation of sensory nerves in the respiratory system, elicitation of oxidative stress and inflammation, or through other mechanisms is one of the primary ways that exposure to air pollution affects normal cardiovascular function. Any homeostatic process that utilizes the autonomic nervous system to regulate organ function might be affected. Thus, air pollution and other inhaled environmental irritants have the potential to alter both local airway function and baro- and chemoreflex responses, which modulate autonomic control of blood pressure and detect concentrations of key gases in the body. While each of these reflex pathways causes distinct responses, the systems are heavily integrated and communicate through overlapping regions of the brainstem to cause global effects. This short review summarizes the function of major pulmonary sensory receptors, baroreceptors, and carotid body chemoreceptors and discusses the impacts of air pollution exposure on these systems.
Literatur
1.
Zurück zum Zitat Brook, R. D., Rajagopalan, S., Pope, C. A., I. I. I., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMed Brook, R. D., Rajagopalan, S., Pope, C. A., I. I. I., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMed
2.
Zurück zum Zitat Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease: A statement for healthcare professionals form the expert panel on population and prevention science of the American Heart Association. Circulation, 109, 2566–2671.CrossRef Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease: A statement for healthcare professionals form the expert panel on population and prevention science of the American Heart Association. Circulation, 109, 2566–2671.CrossRef
3.
Zurück zum Zitat Peters, A., von Klot, S., Heier, M., Trentinaglia, I., Hörmann, A., Wichmann, H. E., et al. (2004). Exposure to traffic and the onset of myocardial infarction. New England Journal of Medicine, 351, 1721–1730.CrossRefPubMed Peters, A., von Klot, S., Heier, M., Trentinaglia, I., Hörmann, A., Wichmann, H. E., et al. (2004). Exposure to traffic and the onset of myocardial infarction. New England Journal of Medicine, 351, 1721–1730.CrossRefPubMed
4.
Zurück zum Zitat Zanobetti, A., Gold, D. R., Stone, P. H., Suh, H. H., Schwartz, J., Coull, B. A., et al. (2010). Reduction in heart rate variability with traffic and air pollution in patients with coronary artery disease. Environmental Health Perspectives, 118, 324–330.CrossRefPubMedCentralPubMed Zanobetti, A., Gold, D. R., Stone, P. H., Suh, H. H., Schwartz, J., Coull, B. A., et al. (2010). Reduction in heart rate variability with traffic and air pollution in patients with coronary artery disease. Environmental Health Perspectives, 118, 324–330.CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Gold, D. R., Litonjua, A. A., Zanobetti, A., Coull, B. A., Schwartz, J., MacCallum, G., et al. (2005). Air pollution and ST-segment depression in elderly subjects. Environmental Health Perspectives, 113, 883–887.CrossRefPubMedCentralPubMed Gold, D. R., Litonjua, A. A., Zanobetti, A., Coull, B. A., Schwartz, J., MacCallum, G., et al. (2005). Air pollution and ST-segment depression in elderly subjects. Environmental Health Perspectives, 113, 883–887.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Wellenius, G. A., Coull, B. A., Godleski, J. J., Koutrakis, P., Okabe, K., Savage, S. T., et al. (2003). Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environmental Health Perspectives, 111, 402–408.CrossRefPubMedCentralPubMed Wellenius, G. A., Coull, B. A., Godleski, J. J., Koutrakis, P., Okabe, K., Savage, S. T., et al. (2003). Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environmental Health Perspectives, 111, 402–408.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., & Delfino, R. J. (2013). Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease. Environmental Health Perspectives, 121(10), 1135–1141.PubMedCentralPubMed Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., & Delfino, R. J. (2013). Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease. Environmental Health Perspectives, 121(10), 1135–1141.PubMedCentralPubMed
8.
Zurück zum Zitat Link, M. S., Luttmann-Gibson, H., Schwartz, J., Mittleman, M. A., Wessler, B., Gold, D. R., et al. (2013). Acute exposure to air pollution triggers atrial fibrillation. Journal of the American College of Cardiology, 62(9), 816–825.CrossRefPubMedCentralPubMed Link, M. S., Luttmann-Gibson, H., Schwartz, J., Mittleman, M. A., Wessler, B., Gold, D. R., et al. (2013). Acute exposure to air pollution triggers atrial fibrillation. Journal of the American College of Cardiology, 62(9), 816–825.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Zanobetti, A., Coull, B. A., Gryparis, A., Kloog, I., Sparrow, D., Vokonas, P. S., et al. (2014). Associations between arrhythmia episodes and temporally and spatially resolved black carbon and particulate matter in elderly patients. Occupational and Environmental Medicine, 71(3), 201–207.CrossRefPubMed Zanobetti, A., Coull, B. A., Gryparis, A., Kloog, I., Sparrow, D., Vokonas, P. S., et al. (2014). Associations between arrhythmia episodes and temporally and spatially resolved black carbon and particulate matter in elderly patients. Occupational and Environmental Medicine, 71(3), 201–207.CrossRefPubMed
10.
Zurück zum Zitat Krishna, M. T., Chauhan, A. J., Frew, A. J., & Holgate, S. T. (1998). Toxicological mechanisms underlying oxidant pollutant-induced airway injury. Reviews on Environmental Health, 13, 59–71.PubMed Krishna, M. T., Chauhan, A. J., Frew, A. J., & Holgate, S. T. (1998). Toxicological mechanisms underlying oxidant pollutant-induced airway injury. Reviews on Environmental Health, 13, 59–71.PubMed
11.
Zurück zum Zitat Pham, H., Bonham, A. C., Pinkerton, K. E., & Chen, C. Y. (2009). Central neuroplasticity and decreased heart rate variability after particulate matter exposure in mice. Environmental Health Perspectives, 117(9), 1448–1453.CrossRefPubMedCentralPubMed Pham, H., Bonham, A. C., Pinkerton, K. E., & Chen, C. Y. (2009). Central neuroplasticity and decreased heart rate variability after particulate matter exposure in mice. Environmental Health Perspectives, 117(9), 1448–1453.CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Chuang, H. C., Hsueh, T. W., Chang, C. C., Hwang, J. S., Chuang, K. J., Yan, Y. H., et al. (2013). Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation. Toxicology and Applied Pharmacology, 266(2), 298–306.CrossRefPubMed Chuang, H. C., Hsueh, T. W., Chang, C. C., Hwang, J. S., Chuang, K. J., Yan, Y. H., et al. (2013). Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation. Toxicology and Applied Pharmacology, 266(2), 298–306.CrossRefPubMed
13.
Zurück zum Zitat Rowan, W. H., 3rd, Campen, M. J., Wichers, L. B., & Watkinson, W. P. (2007). Heart rate variability in rodents: Uses and caveats in toxicological studies. Cardiovascular Toxicology, 7, 28–51.CrossRefPubMed Rowan, W. H., 3rd, Campen, M. J., Wichers, L. B., & Watkinson, W. P. (2007). Heart rate variability in rodents: Uses and caveats in toxicological studies. Cardiovascular Toxicology, 7, 28–51.CrossRefPubMed
14.
Zurück zum Zitat Corey, L. M., Baker, C., & Luchtel, D. L. (2006). Heart-rate variability in the apolipoprotein E knockout transgenic mouse following exposure to Seattle particulate matter. Journal of Toxicology and Environmental Health. Part A, 69, 953–965.CrossRefPubMed Corey, L. M., Baker, C., & Luchtel, D. L. (2006). Heart-rate variability in the apolipoprotein E knockout transgenic mouse following exposure to Seattle particulate matter. Journal of Toxicology and Environmental Health. Part A, 69, 953–965.CrossRefPubMed
15.
Zurück zum Zitat Bigger, J. T., Fleiss, J. L., Rolnitzky, L. M., & Steinman, R. C. (1993). The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation, 88, 927–934.CrossRefPubMed Bigger, J. T., Fleiss, J. L., Rolnitzky, L. M., & Steinman, R. C. (1993). The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation, 88, 927–934.CrossRefPubMed
16.
Zurück zum Zitat Fauchier, L., Babuty, D., Melin, A., Bonnet, P., Cosnay, P., & Paul Fauchier, J. (2004). Heart rate variability in severe right or left heart failure: The role of pulmonary hypertension and resistances. European Journal of Heart Failure, 6(2), 181–185.CrossRefPubMed Fauchier, L., Babuty, D., Melin, A., Bonnet, P., Cosnay, P., & Paul Fauchier, J. (2004). Heart rate variability in severe right or left heart failure: The role of pulmonary hypertension and resistances. European Journal of Heart Failure, 6(2), 181–185.CrossRefPubMed
17.
Zurück zum Zitat Anselme, F., Loriot, S., Henry, J. P., Dionnet, F., Napoleoni, J. G., Thuillez, C., et al. (2007). Inhalation of diluted diesel engine emission impacts heart rate variability and arrhythmia occurrence in a rat model of chronic ischemic heart failure. Archives of Toxicology, 81(4), 299–307.CrossRefPubMed Anselme, F., Loriot, S., Henry, J. P., Dionnet, F., Napoleoni, J. G., Thuillez, C., et al. (2007). Inhalation of diluted diesel engine emission impacts heart rate variability and arrhythmia occurrence in a rat model of chronic ischemic heart failure. Archives of Toxicology, 81(4), 299–307.CrossRefPubMed
18.
Zurück zum Zitat Elder, A., Couderc, J. P., Gelein, R., Eberly, S., Cox, C., Xia, X., et al. (2007). Effects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously hypertensive rats. Inhalation Toxicology, 19(1), 1–12.CrossRefPubMed Elder, A., Couderc, J. P., Gelein, R., Eberly, S., Cox, C., Xia, X., et al. (2007). Effects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously hypertensive rats. Inhalation Toxicology, 19(1), 1–12.CrossRefPubMed
19.
Zurück zum Zitat Chuang, K. J., Chan, C. C., Chen, N. T., Su, T. C., & Lin, L. Y. (2005). Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environmental Health Perspectives, 113, 1693–1697.CrossRefPubMedCentralPubMed Chuang, K. J., Chan, C. C., Chen, N. T., Su, T. C., & Lin, L. Y. (2005). Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environmental Health Perspectives, 113, 1693–1697.CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krombach, F., et al. (2005). Cardiovascular effects of fine and ultrafine particles. Journal of Aerosol Medicine, 18, 1–22.CrossRefPubMed Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krombach, F., et al. (2005). Cardiovascular effects of fine and ultrafine particles. Journal of Aerosol Medicine, 18, 1–22.CrossRefPubMed
21.
Zurück zum Zitat Vallejo, M., Ruiz, S., Hermosillo, A. G., Borja-Aburto, V. H., & Cárdenas, M. (2006). Ambient fine particles modify heart rate variability in young healthy adults. Journal of Exposure Science & Environmental Epidemiology, 16, 125–130.CrossRef Vallejo, M., Ruiz, S., Hermosillo, A. G., Borja-Aburto, V. H., & Cárdenas, M. (2006). Ambient fine particles modify heart rate variability in young healthy adults. Journal of Exposure Science & Environmental Epidemiology, 16, 125–130.CrossRef
22.
Zurück zum Zitat Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., et al. (2000). Ambient pollution and heart rate variability. Circulation, 101, 1267–1273.CrossRefPubMed Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., et al. (2000). Ambient pollution and heart rate variability. Circulation, 101, 1267–1273.CrossRefPubMed
23.
Zurück zum Zitat Schwartz, J., Litonjua, A., Suh, H., Verrier, M., Zanobetti, A., Syring, M., et al. (2005). Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax, 60, 455–461.CrossRefPubMedCentralPubMed Schwartz, J., Litonjua, A., Suh, H., Verrier, M., Zanobetti, A., Syring, M., et al. (2005). Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax, 60, 455–461.CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat Godleski, J. J., Verrier, R. L., Koutrakis, P., Catalano, P., Coull, B., Reinisch, U., et al. (2000). Mechanisms of morbidity and mortality from exposure to ambient air particles. Research Report/Health Effects Institute, 91, 5–88. Godleski, J. J., Verrier, R. L., Koutrakis, P., Catalano, P., Coull, B., Reinisch, U., et al. (2000). Mechanisms of morbidity and mortality from exposure to ambient air particles. Research Report/Health Effects Institute, 91, 5–88.
25.
Zurück zum Zitat Tankersley, C. G., Campen, M., Bierman, A., Flanders, S. E., Broman, K. W., & Rabold, R. (2004). Particle effects on heart-rate regulation in senescent mice. Inhalation Toxicology, 16, 381–390.CrossRefPubMed Tankersley, C. G., Campen, M., Bierman, A., Flanders, S. E., Broman, K. W., & Rabold, R. (2004). Particle effects on heart-rate regulation in senescent mice. Inhalation Toxicology, 16, 381–390.CrossRefPubMed
26.
Zurück zum Zitat Jia, X., Song, X., Shima, M., Tamura, K., Deng, F., & Guo, X. (2012). Effects of fine particulate on heart rate variability in Beijing: A panel study of healthy elderly subjects. International Archives of Occupational and Environmental Health, 85(1), 97–107.CrossRefPubMed Jia, X., Song, X., Shima, M., Tamura, K., Deng, F., & Guo, X. (2012). Effects of fine particulate on heart rate variability in Beijing: A panel study of healthy elderly subjects. International Archives of Occupational and Environmental Health, 85(1), 97–107.CrossRefPubMed
27.
Zurück zum Zitat Farkas, A., Dempster, J., & Coker, S. J. (2008). Importance of vagally mediated bradycardia for the induction of torsade de pointes in an in vivo model. British Journal of Pharmacology, 154, 958–970.CrossRefPubMedCentralPubMed Farkas, A., Dempster, J., & Coker, S. J. (2008). Importance of vagally mediated bradycardia for the induction of torsade de pointes in an in vivo model. British Journal of Pharmacology, 154, 958–970.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Gralinski, M. R. (2003). The dog’s role in the preclinical assessment of QT interval prolongation. Toxicologic Pathology, 31, 11–16.PubMed Gralinski, M. R. (2003). The dog’s role in the preclinical assessment of QT interval prolongation. Toxicologic Pathology, 31, 11–16.PubMed
29.
Zurück zum Zitat Reynolds, E. B., Seda, G., Ware, J. C., Vinik, A. I., Risk, M. R., & Fishback, N. F. (2007). Autonomic function in sleep apnea patients: Increased heart rate variability except during REM sleep in obese patients. Sleep Breathing, 11, 53–60.CrossRefPubMed Reynolds, E. B., Seda, G., Ware, J. C., Vinik, A. I., Risk, M. R., & Fishback, N. F. (2007). Autonomic function in sleep apnea patients: Increased heart rate variability except during REM sleep in obese patients. Sleep Breathing, 11, 53–60.CrossRefPubMed
30.
Zurück zum Zitat Eguchi, K., Schwartz, J. E., Pickering, T. G., Hoshide, S., Ishikawa, J., Shimada, K., et al. (2010). Increased heart rate variability during sleep is a predictor for future cardiovascular events in patients with type 2 diabetes. Hypertension Research, 33, 737–742.CrossRefPubMed Eguchi, K., Schwartz, J. E., Pickering, T. G., Hoshide, S., Ishikawa, J., Shimada, K., et al. (2010). Increased heart rate variability during sleep is a predictor for future cardiovascular events in patients with type 2 diabetes. Hypertension Research, 33, 737–742.CrossRefPubMed
31.
Zurück zum Zitat Stein, P. K., Domitrovich, P. P., Huikuri, H. V., Kleiger, R. E., & Cast Investigators. (2005). Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. Journal of Cardiovascular Electrophysiology, 16(1), 13–20.CrossRefPubMed Stein, P. K., Domitrovich, P. P., Huikuri, H. V., Kleiger, R. E., & Cast Investigators. (2005). Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. Journal of Cardiovascular Electrophysiology, 16(1), 13–20.CrossRefPubMed
32.
Zurück zum Zitat Carr, M. J., & Undem, B. J. (2003). Bronchopulmonary afferent nerves. Respirology, 8(3), 291–301.CrossRefPubMed Carr, M. J., & Undem, B. J. (2003). Bronchopulmonary afferent nerves. Respirology, 8(3), 291–301.CrossRefPubMed
33.
Zurück zum Zitat Coleridge, H. M., Coleridge, J. C., Poore, E. R., Roberts, A. M., & Schultz, H. D. (1984). Aortic wall properties and baroreceptor behaviour at normal arterial pressure and in acute hypertensive resetting in dogs. Journal of Physiology, 350, 309–326.CrossRefPubMedCentralPubMed Coleridge, H. M., Coleridge, J. C., Poore, E. R., Roberts, A. M., & Schultz, H. D. (1984). Aortic wall properties and baroreceptor behaviour at normal arterial pressure and in acute hypertensive resetting in dogs. Journal of Physiology, 350, 309–326.CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Widdicombe, J., & Lee, L. Y. (2001). Airway reflexes, autonomic function, and cardiovascular responses. Environmental Health Perspectives, 109, 579–584.CrossRefPubMedCentralPubMed Widdicombe, J., & Lee, L. Y. (2001). Airway reflexes, autonomic function, and cardiovascular responses. Environmental Health Perspectives, 109, 579–584.CrossRefPubMedCentralPubMed
35.
Zurück zum Zitat Taylor-Clark, T. E., & Undem, B. J. (2011). Sensing pulmonary oxidative stress by lung vagal afferents. Respiratory Physiology & Neurobiology, 178(3), 406–413.CrossRef Taylor-Clark, T. E., & Undem, B. J. (2011). Sensing pulmonary oxidative stress by lung vagal afferents. Respiratory Physiology & Neurobiology, 178(3), 406–413.CrossRef
36.
Zurück zum Zitat Sann, H., & Pierau, F. K. (1998). Efferent functions of C-fiber nociceptors. Zeitschrift fur Rheumatologie, 57, 8–13.CrossRefPubMed Sann, H., & Pierau, F. K. (1998). Efferent functions of C-fiber nociceptors. Zeitschrift fur Rheumatologie, 57, 8–13.CrossRefPubMed
37.
Zurück zum Zitat Rhoades, R., & Bell, D. (2013). Lung and chest wall reflexes. Medical physiology—Principles of clinical medicine (pp. 386–399). Philadelphia, PA: Lippincott Williams and Wilkins. Rhoades, R., & Bell, D. (2013). Lung and chest wall reflexes. Medical physiology—Principles of clinical medicine (pp. 386–399). Philadelphia, PA: Lippincott Williams and Wilkins.
38.
Zurück zum Zitat Ganong, W. F. (2010). Regulation of respiration. In C. Taylor (Ed.), Review of medical physiology (pp. 625–639). New York, NY: McGraw Hill. Ganong, W. F. (2010). Regulation of respiration. In C. Taylor (Ed.), Review of medical physiology (pp. 625–639). New York, NY: McGraw Hill.
39.
Zurück zum Zitat Hazari, M. S., Rowan, W. H., Winsett, D. W., Ledbetter, A. D., Haykal-Coates, N., Watkinson, W. P., et al. (2008). Potentiation of pulmonary reflex response to capsaicin 24 h following whole-body acrolein exposure is mediated by TRPV1. Respiratory Physiology & Neurobiology, 160, 160–171.CrossRef Hazari, M. S., Rowan, W. H., Winsett, D. W., Ledbetter, A. D., Haykal-Coates, N., Watkinson, W. P., et al. (2008). Potentiation of pulmonary reflex response to capsaicin 24 h following whole-body acrolein exposure is mediated by TRPV1. Respiratory Physiology & Neurobiology, 160, 160–171.CrossRef
40.
Zurück zum Zitat Lee, L. Y., Beck, E. R., Morton, R. F., Kou, Y. R., & Frazier, D. T. (1987). Role of bronchopulmonary C-fiber afferents in the apneic response to cigarette smoke. Journal of Applied Physiology, 63, 1366–1373.PubMed Lee, L. Y., Beck, E. R., Morton, R. F., Kou, Y. R., & Frazier, D. T. (1987). Role of bronchopulmonary C-fiber afferents in the apneic response to cigarette smoke. Journal of Applied Physiology, 63, 1366–1373.PubMed
41.
Zurück zum Zitat Xu, J., & Xu, F. (2010). Role of neurogenic substance P in overexpression of alveolar macrophages’ neurokinin 1 receptor in mice exposed to cigarette smoke. Experimental Lung Research, 36(4), 243–254.CrossRefPubMed Xu, J., & Xu, F. (2010). Role of neurogenic substance P in overexpression of alveolar macrophages’ neurokinin 1 receptor in mice exposed to cigarette smoke. Experimental Lung Research, 36(4), 243–254.CrossRefPubMed
42.
Zurück zum Zitat Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124(6), 1269–1282.CrossRefPubMed Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124(6), 1269–1282.CrossRefPubMed
43.
Zurück zum Zitat Grace, M. S., & Belvisi, M. G. (2011). TRPA1 receptors in cough. Pulmonary Pharmacology & Therapeutics, 24(3), 286–288.CrossRef Grace, M. S., & Belvisi, M. G. (2011). TRPA1 receptors in cough. Pulmonary Pharmacology & Therapeutics, 24(3), 286–288.CrossRef
44.
Zurück zum Zitat Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Krantz, Q. T., King, C., Costa, D. L., et al. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119(7), 951–957.CrossRefPubMedCentralPubMed Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Krantz, Q. T., King, C., Costa, D. L., et al. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119(7), 951–957.CrossRefPubMedCentralPubMed
45.
Zurück zum Zitat Barth, K., & Kasper, M. (2009). Membrane compartments and purinergic signalling: Occurrence and function of P2X receptors in lung. FEBS Journal, 276(2), 341–353.CrossRefPubMed Barth, K., & Kasper, M. (2009). Membrane compartments and purinergic signalling: Occurrence and function of P2X receptors in lung. FEBS Journal, 276(2), 341–353.CrossRefPubMed
46.
Zurück zum Zitat Lai, C. J., Ruan, T., & Kou, Y. R. (2005). The involvement of hydroxyl radical and cyclooxygenase metabolites in the activation of lung vagal sensory receptors by circulatory endotoxin in rats. Journal of Applied Physiology, 98(2), 620–628.CrossRefPubMed Lai, C. J., Ruan, T., & Kou, Y. R. (2005). The involvement of hydroxyl radical and cyclooxygenase metabolites in the activation of lung vagal sensory receptors by circulatory endotoxin in rats. Journal of Applied Physiology, 98(2), 620–628.CrossRefPubMed
47.
Zurück zum Zitat Kappagoda, C. T., & Ravi, K. (2006). The rapidly adapting receptors in mammalian airways and their responses to changes in extravascular fluid volume. Experimental Physiology, 91(4), 647–654.CrossRefPubMed Kappagoda, C. T., & Ravi, K. (2006). The rapidly adapting receptors in mammalian airways and their responses to changes in extravascular fluid volume. Experimental Physiology, 91(4), 647–654.CrossRefPubMed
48.
Zurück zum Zitat Coleridge, H. M., & Coleridge, J. C. G. (1994). Pulmonary reflexes: Neural mechanisms of pulmonary defense. Annual Review of Physiology, 56, 69–91.CrossRefPubMed Coleridge, H. M., & Coleridge, J. C. G. (1994). Pulmonary reflexes: Neural mechanisms of pulmonary defense. Annual Review of Physiology, 56, 69–91.CrossRefPubMed
49.
Zurück zum Zitat Sant’Ambrogio, G., & Widdicombe, J. (2001). Reflexes from airway rapidly adapting receptors. Respiration Physiology, 125, 33–45.CrossRefPubMed Sant’Ambrogio, G., & Widdicombe, J. (2001). Reflexes from airway rapidly adapting receptors. Respiration Physiology, 125, 33–45.CrossRefPubMed
50.
Zurück zum Zitat Lee, L. Y., & Widdicombe, J. G. (2001). Modulation of airway sensitivity to inhaled irritants: Role of inflammatory mediators. Environmental Health Perspectives, 109, 585–589.CrossRefPubMedCentralPubMed Lee, L. Y., & Widdicombe, J. G. (2001). Modulation of airway sensitivity to inhaled irritants: Role of inflammatory mediators. Environmental Health Perspectives, 109, 585–589.CrossRefPubMedCentralPubMed
51.
Zurück zum Zitat Pys-Roberts, C., Greene, L. T., Meloche, R., & Foex, P. (1971). Studies of anesthesia in relation to hypertension. II: Haemodynamic consequences of induction and endotracheal intubation. British Journal of Anaesthesia, 43, 531–547.CrossRef Pys-Roberts, C., Greene, L. T., Meloche, R., & Foex, P. (1971). Studies of anesthesia in relation to hypertension. II: Haemodynamic consequences of induction and endotracheal intubation. British Journal of Anaesthesia, 43, 531–547.CrossRef
52.
Zurück zum Zitat Mearns, B. M. (2013). Heart failure: Air pollution linked with heart-failure-related hospitalization and mortality. Nature Reviews. Cardiology, 10, 551. Mearns, B. M. (2013). Heart failure: Air pollution linked with heart-failure-related hospitalization and mortality. Nature Reviews. Cardiology, 10, 551.
53.
Zurück zum Zitat Ravi, K., & Kappagoda, T. (2009). Rapidly adapting receptors in acute heart failure and their impact on dyspnea. Respiratory Physiology & Neurobiology, 167, 107–115.CrossRef Ravi, K., & Kappagoda, T. (2009). Rapidly adapting receptors in acute heart failure and their impact on dyspnea. Respiratory Physiology & Neurobiology, 167, 107–115.CrossRef
54.
Zurück zum Zitat Canning, B. J., Mori, N., & Mazzone, S. B. (2006). Vagal afferent nerves regulating the cough reflex. Respiratory Physiology & Neurobiology, 152(3), 223–242.CrossRef Canning, B. J., Mori, N., & Mazzone, S. B. (2006). Vagal afferent nerves regulating the cough reflex. Respiratory Physiology & Neurobiology, 152(3), 223–242.CrossRef
55.
Zurück zum Zitat Taha, B. H., Simon, P. M., Dempsey, J. A., Skatrud, J. B., & Iber, C. (1995). Respiratory sinus arrhythmia in humans: An obligatory role for vagal feedback from the lungs. Journal of Applied Physiology, 78, 638–645.PubMed Taha, B. H., Simon, P. M., Dempsey, J. A., Skatrud, J. B., & Iber, C. (1995). Respiratory sinus arrhythmia in humans: An obligatory role for vagal feedback from the lungs. Journal of Applied Physiology, 78, 638–645.PubMed
56.
Zurück zum Zitat Hayano, J., Yasuma, F., Okada, A., Mukai, S., & Fujinami, T. (1996). Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation, 94, 842–847.CrossRefPubMed Hayano, J., Yasuma, F., Okada, A., Mukai, S., & Fujinami, T. (1996). Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation, 94, 842–847.CrossRefPubMed
57.
Zurück zum Zitat Zeidan-Shwiri, T., Aronson, D., Atalla, K., Blich, M., Suleiman, M., Marai, I., et al. (2011). Circadian pattern of life-threatening ventricular arrhythmia in patients with sleep-disordered breathing and implantable cardioverter-defibrillators. Heart Rhythm, 8, 657–662.CrossRefPubMed Zeidan-Shwiri, T., Aronson, D., Atalla, K., Blich, M., Suleiman, M., Marai, I., et al. (2011). Circadian pattern of life-threatening ventricular arrhythmia in patients with sleep-disordered breathing and implantable cardioverter-defibrillators. Heart Rhythm, 8, 657–662.CrossRefPubMed
58.
Zurück zum Zitat Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., et al. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46, 714–718.CrossRefPubMed Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., et al. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46, 714–718.CrossRefPubMed
59.
Zurück zum Zitat Cortelli, P., Lombardi, C., Montagna, P., & Parati, G. (2012). Baroreflex modulation during sleep and in obstructive sleep apnea syndrome. Autonomic Neuroscience, 169(1), 7–11.CrossRefPubMed Cortelli, P., Lombardi, C., Montagna, P., & Parati, G. (2012). Baroreflex modulation during sleep and in obstructive sleep apnea syndrome. Autonomic Neuroscience, 169(1), 7–11.CrossRefPubMed
60.
Zurück zum Zitat Walgenbach, S. C., & Shepherd, J. T. (1984). Role of arterial and cardiopulmonary mechanoreceptors in the regulation of arterial pressure during rest and exercise in conscious dogs. Mayo Clinic Proceedings, 59, 467–475.CrossRefPubMed Walgenbach, S. C., & Shepherd, J. T. (1984). Role of arterial and cardiopulmonary mechanoreceptors in the regulation of arterial pressure during rest and exercise in conscious dogs. Mayo Clinic Proceedings, 59, 467–475.CrossRefPubMed
61.
Zurück zum Zitat Lohmeier, T. E., & Iliescu, R. (2011). Chronic lowering of blood pressure by carotid baroreflex activation: Mechanisms and potential for hypertension therapy. Hypertension, 57, 880–886.CrossRefPubMedCentralPubMed Lohmeier, T. E., & Iliescu, R. (2011). Chronic lowering of blood pressure by carotid baroreflex activation: Mechanisms and potential for hypertension therapy. Hypertension, 57, 880–886.CrossRefPubMedCentralPubMed
62.
Zurück zum Zitat Kougias, P., Weakley, S. M., Yao, Q., Lin, P. H., & Chen, C. (2010). Arterial baroreceptors in the management of systemic hypertension. Medical Science Monitor, 16, 1–8. Kougias, P., Weakley, S. M., Yao, Q., Lin, P. H., & Chen, C. (2010). Arterial baroreceptors in the management of systemic hypertension. Medical Science Monitor, 16, 1–8.
63.
Zurück zum Zitat Johansson, M., Gao, S. A., Friberg, P., Annerstedt, M., Carlström, J., Ivarsson, T., et al. (2007). Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. Journal of Hypertension, 25(1), 163–168.CrossRefPubMed Johansson, M., Gao, S. A., Friberg, P., Annerstedt, M., Carlström, J., Ivarsson, T., et al. (2007). Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. Journal of Hypertension, 25(1), 163–168.CrossRefPubMed
64.
Zurück zum Zitat Mortara, A., La Rovere, M. T., Pinna, G. D., Prpa, A., Maestri, R., Febo, O., et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: Clinical and hemodynamic correlates and prognostic implications. Circulation, 96(10), 3450–3458.CrossRefPubMed Mortara, A., La Rovere, M. T., Pinna, G. D., Prpa, A., Maestri, R., Febo, O., et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: Clinical and hemodynamic correlates and prognostic implications. Circulation, 96(10), 3450–3458.CrossRefPubMed
65.
Zurück zum Zitat La Rovere, M. T., Pinna, G. D., & Raczak, G. (2008). Baroreflex sensitivity: Measurement and clinical implications. Annals of Noninvasive Electrocardiology, 13(2), 191–207.CrossRefPubMed La Rovere, M. T., Pinna, G. D., & Raczak, G. (2008). Baroreflex sensitivity: Measurement and clinical implications. Annals of Noninvasive Electrocardiology, 13(2), 191–207.CrossRefPubMed
66.
Zurück zum Zitat Struyker-Boudier, H. A., Evenwel, R. T., Smits, J. F., & Van Essen, H. (1982). Baroreflex sensitivity during the development of spontaneous hypertension in rats. Clinical Science (London), 62(6), 589–594. Struyker-Boudier, H. A., Evenwel, R. T., Smits, J. F., & Van Essen, H. (1982). Baroreflex sensitivity during the development of spontaneous hypertension in rats. Clinical Science (London), 62(6), 589–594.
67.
Zurück zum Zitat Fuks, K., Moebus, S., Hertel, S., Viehmann, A., Nonnemacher, M., Dragano, N., et al. (2011). Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environmental Health Perspectives, 119, 1706–1711.CrossRefPubMedCentralPubMed Fuks, K., Moebus, S., Hertel, S., Viehmann, A., Nonnemacher, M., Dragano, N., et al. (2011). Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environmental Health Perspectives, 119, 1706–1711.CrossRefPubMedCentralPubMed
68.
Zurück zum Zitat Dong, G. H., Qian, Z. M., Xaverius, P. K., Trevathan, E., Maalouf, S., Parker, J., et al. (2013). Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension, 61(3), 578–584.CrossRefPubMed Dong, G. H., Qian, Z. M., Xaverius, P. K., Trevathan, E., Maalouf, S., Parker, J., et al. (2013). Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension, 61(3), 578–584.CrossRefPubMed
69.
Zurück zum Zitat Schwartz, J., Alexeeff, S. E., Mordukhovich, I., Gryparis, A., Vokonas, P., Suh, H., et al. (2012). Association between long-term exposure to traffic particles and blood pressure in the Veterans Administration Normative Aging Study. Occupational and Environmental Medicine, 69(6), 422–427.CrossRefPubMedCentralPubMed Schwartz, J., Alexeeff, S. E., Mordukhovich, I., Gryparis, A., Vokonas, P., Suh, H., et al. (2012). Association between long-term exposure to traffic particles and blood pressure in the Veterans Administration Normative Aging Study. Occupational and Environmental Medicine, 69(6), 422–427.CrossRefPubMedCentralPubMed
70.
Zurück zum Zitat Fuks, K. B., Weinmayr, G., Foraster, M., Dratva, J., Hampel, R., Houthuijs, D., et al. (2014). Arterial blood pressure and long-term exposure to traffic-related air pollution: An analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Environmental Health Perspectives (Epub ahead of print). Fuks, K. B., Weinmayr, G., Foraster, M., Dratva, J., Hampel, R., Houthuijs, D., et al. (2014). Arterial blood pressure and long-term exposure to traffic-related air pollution: An analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Environmental Health Perspectives (Epub ahead of print).
71.
Zurück zum Zitat Babisch, W., Wolf, K., Petz, M., Heinrich, J., Cyrys, J., & Peters, A. (2014). Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: The KORA study. Environmental Health Perspectives, 122(5), 492–498.PubMedCentralPubMed Babisch, W., Wolf, K., Petz, M., Heinrich, J., Cyrys, J., & Peters, A. (2014). Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: The KORA study. Environmental Health Perspectives, 122(5), 492–498.PubMedCentralPubMed
72.
Zurück zum Zitat Hazari, M. S., Griggs, J., Winsett, D. W., Haykal-Coates, N., Ledbetter, A., Costa, D. L., et al. (2014). A single exposure to acrolein desensitizes baroreflex responsiveness and increases cardiac arrhythmias in normotensive and hypertensive rats. Cardiovascular Toxicology, 14(1), 52–63. Hazari, M. S., Griggs, J., Winsett, D. W., Haykal-Coates, N., Ledbetter, A., Costa, D. L., et al. (2014). A single exposure to acrolein desensitizes baroreflex responsiveness and increases cardiac arrhythmias in normotensive and hypertensive rats. Cardiovascular Toxicology, 14(1), 52–63.
73.
Zurück zum Zitat Brook, R. D., & Rajagopalan, S. (2009). Particulate matter, air pollution, and blood pressure. Journal of the American Society of Hypertension, 3, 332–350.CrossRefPubMed Brook, R. D., & Rajagopalan, S. (2009). Particulate matter, air pollution, and blood pressure. Journal of the American Society of Hypertension, 3, 332–350.CrossRefPubMed
74.
Zurück zum Zitat Huang, W., Zhu, T., Pan, X., Hu, M., Lu, S. E., Lin, Y., et al. (2012). Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: Interactions of systemic inflammation, overweight, and gender. American Journal of Epidemiology, 176(2), 117–126.CrossRefPubMedCentralPubMed Huang, W., Zhu, T., Pan, X., Hu, M., Lu, S. E., Lin, Y., et al. (2012). Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: Interactions of systemic inflammation, overweight, and gender. American Journal of Epidemiology, 176(2), 117–126.CrossRefPubMedCentralPubMed
75.
Zurück zum Zitat Routledge, H. C., Manney, S., Harrison, R. M., Ayres, J. G., & Townend, J. N. (2006). Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart, 92(2), 220–227.CrossRefPubMedCentralPubMed Routledge, H. C., Manney, S., Harrison, R. M., Ayres, J. G., & Townend, J. N. (2006). Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart, 92(2), 220–227.CrossRefPubMedCentralPubMed
76.
Zurück zum Zitat Valenti, V. E., Abreu, L. C., Saldiva, P. H., Carvalho, T. D., & Ferreira, C. (2010). Effects of sidestream cigarette smoke exposure on baroreflex components in spontaneously hypertensive rats. International Journal of Environmental Health Research, 20(6), 431–437.CrossRefPubMed Valenti, V. E., Abreu, L. C., Saldiva, P. H., Carvalho, T. D., & Ferreira, C. (2010). Effects of sidestream cigarette smoke exposure on baroreflex components in spontaneously hypertensive rats. International Journal of Environmental Health Research, 20(6), 431–437.CrossRefPubMed
77.
Zurück zum Zitat Legramante, J. M., Valentini, F., Magrini, A., Palleschi, G., Sacco, S., Iavicoli, I., et al. (2009). Cardiac autonomic regulation after lung exposure to carbon nanotubes. Human and Experimental Toxicology, 28, 369–375.CrossRefPubMed Legramante, J. M., Valentini, F., Magrini, A., Palleschi, G., Sacco, S., Iavicoli, I., et al. (2009). Cardiac autonomic regulation after lung exposure to carbon nanotubes. Human and Experimental Toxicology, 28, 369–375.CrossRefPubMed
78.
Zurück zum Zitat Bartoli, C. R., Wellenius, G. A., Diaz, E. A., Lawrence, J., Coull, B. A., Akiyama, I., et al. (2009). Mechanisms of inhaled fine particulate air pollution-induced arterial blood pressure changes. Environmental Health Perspectives, 117, 361–366.CrossRefPubMedCentralPubMed Bartoli, C. R., Wellenius, G. A., Diaz, E. A., Lawrence, J., Coull, B. A., Akiyama, I., et al. (2009). Mechanisms of inhaled fine particulate air pollution-induced arterial blood pressure changes. Environmental Health Perspectives, 117, 361–366.CrossRefPubMedCentralPubMed
79.
Zurück zum Zitat Lai, C. J., Yang, C. C. H., Hsu, Y. Y., Lin, Y. N., & Kuo, T. B. J. (2006). Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. Journal of Applied Physiology, 100(6), 1974–1982.CrossRefPubMed Lai, C. J., Yang, C. C. H., Hsu, Y. Y., Lin, Y. N., & Kuo, T. B. J. (2006). Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. Journal of Applied Physiology, 100(6), 1974–1982.CrossRefPubMed
80.
Zurück zum Zitat La Rovere, M. T., Gnemmi, M., & Vaccarini, C. (2001). Baroreflex sensitivity. Italian Heart Journal. Supplement, 2, 472–477. La Rovere, M. T., Gnemmi, M., & Vaccarini, C. (2001). Baroreflex sensitivity. Italian Heart Journal. Supplement, 2, 472–477.
81.
Zurück zum Zitat Vanoli, E., & Schwartz, P. J. (1990). Sympathetic–parasympathetic interaction and sudden death. Basic Research in Cardiology, 85, 305–321.PubMed Vanoli, E., & Schwartz, P. J. (1990). Sympathetic–parasympathetic interaction and sudden death. Basic Research in Cardiology, 85, 305–321.PubMed
82.
Zurück zum Zitat Liu, J. L., Murakami, H., & Zucker, I. H. (1996). Effects of NO on baroreflex control of heart rate and renal nerve activity in conscious rabbits. American Journal of Physiology, 270, 1361–1370. Liu, J. L., Murakami, H., & Zucker, I. H. (1996). Effects of NO on baroreflex control of heart rate and renal nerve activity in conscious rabbits. American Journal of Physiology, 270, 1361–1370.
83.
Zurück zum Zitat Spieker, L. E., Corti, R., Binggeli, C., Luscher, T. F., & Noll, G. (2000). Baroreceptor dysfunction induced by nitric oxide synthase inhibition in humans. Journal of the American College of Cardiology, 36, 213–218.CrossRefPubMed Spieker, L. E., Corti, R., Binggeli, C., Luscher, T. F., & Noll, G. (2000). Baroreceptor dysfunction induced by nitric oxide synthase inhibition in humans. Journal of the American College of Cardiology, 36, 213–218.CrossRefPubMed
84.
Zurück zum Zitat Sithu, S. D., Srivastava, S., Siddiqui, M. A., Vladykovskaya, E., Riggs, D. W., Conklin, D. J., et al. (2010). Exposure to acrolein by inhalation causes platelet activation. Toxicology and Applied Pharmacology, 248, 100–110.CrossRefPubMedCentralPubMed Sithu, S. D., Srivastava, S., Siddiqui, M. A., Vladykovskaya, E., Riggs, D. W., Conklin, D. J., et al. (2010). Exposure to acrolein by inhalation causes platelet activation. Toxicology and Applied Pharmacology, 248, 100–110.CrossRefPubMedCentralPubMed
85.
Zurück zum Zitat O’Toole, T. E., Zheng, Y. T., Hellmann, J., Conklin, D. J., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacolog., 236, 194–201.CrossRef O’Toole, T. E., Zheng, Y. T., Hellmann, J., Conklin, D. J., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacolog., 236, 194–201.CrossRef
86.
Zurück zum Zitat de Queiroz, T. M., Monteiro, M. M., & Braga, V. A. (2013). Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: New perspective. Frontiers in Physiology., 105, 1–6. de Queiroz, T. M., Monteiro, M. M., & Braga, V. A. (2013). Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: New perspective. Frontiers in Physiology., 105, 1–6.
87.
Zurück zum Zitat Kara, T., Narkiewicz, K., & Somers, V. K. (2003). Chemoreflexes—Physiology and clinical implications. Acta Physiologica Scandinavica, 177(3), 377–384.CrossRefPubMed Kara, T., Narkiewicz, K., & Somers, V. K. (2003). Chemoreflexes—Physiology and clinical implications. Acta Physiologica Scandinavica, 177(3), 377–384.CrossRefPubMed
88.
Zurück zum Zitat Roux, J. C., Peyronnet, J., Pascual, O., Dalmaz, Y., & Pequignot, J. M. (2000). Ventilatory and central neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection in rat. Journal of Physiology, 522, 493–501.CrossRefPubMedCentralPubMed Roux, J. C., Peyronnet, J., Pascual, O., Dalmaz, Y., & Pequignot, J. M. (2000). Ventilatory and central neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection in rat. Journal of Physiology, 522, 493–501.CrossRefPubMedCentralPubMed
89.
Zurück zum Zitat Liu, Q., Kim, J., Cinotte, J., Homolka, P., & Wong-Riley, M. T. (2003). Carotid body denervation effect on cytochrome oxidase activity in pre-Botzinger complex of developing rats. Journal of Applied Physiology, 94, 1115–1121.CrossRefPubMed Liu, Q., Kim, J., Cinotte, J., Homolka, P., & Wong-Riley, M. T. (2003). Carotid body denervation effect on cytochrome oxidase activity in pre-Botzinger complex of developing rats. Journal of Applied Physiology, 94, 1115–1121.CrossRefPubMed
90.
Zurück zum Zitat López-Barneo, J., Ortega-Sáenz, P., Pardal, R., Pascual, A., & Piruat, J. I. (2008). Carotid body oxygen sensing. European Respiratory Journal, 32, 1386–1398.CrossRefPubMed López-Barneo, J., Ortega-Sáenz, P., Pardal, R., Pascual, A., & Piruat, J. I. (2008). Carotid body oxygen sensing. European Respiratory Journal, 32, 1386–1398.CrossRefPubMed
91.
Zurück zum Zitat DeMeo, D. L., Zanobetti, A., Litonjua, A. A., Coull, B. A., Schwartz, J., & Gold, D. R. (2004). Ambient air pollution and oxygen saturation. American Journal of Respiratory and Critical Care Medicine, 170, 383–387.CrossRefPubMed DeMeo, D. L., Zanobetti, A., Litonjua, A. A., Coull, B. A., Schwartz, J., & Gold, D. R. (2004). Ambient air pollution and oxygen saturation. American Journal of Respiratory and Critical Care Medicine, 170, 383–387.CrossRefPubMed
92.
Zurück zum Zitat Pope, C. A., Dockery, D. W., Kanner, R. E., Villegas, G. M., & Schwartz, J. (1999). Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. American Journal of Respiratory and Critical Care Medicine, 159, 365–372.CrossRef Pope, C. A., Dockery, D. W., Kanner, R. E., Villegas, G. M., & Schwartz, J. (1999). Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. American Journal of Respiratory and Critical Care Medicine, 159, 365–372.CrossRef
93.
Zurück zum Zitat Volpino, P., Tomei, F., La Valle, C., Tomao, E., Rosati, M. V., Ciarrocca, M., et al. (2004). Respiratory and cardiovascular function at rest and during exercise testing in a healthy working population: Effects of outdoor traffic air pollution. Occupational Medicine (London), 54, 475–482.CrossRef Volpino, P., Tomei, F., La Valle, C., Tomao, E., Rosati, M. V., Ciarrocca, M., et al. (2004). Respiratory and cardiovascular function at rest and during exercise testing in a healthy working population: Effects of outdoor traffic air pollution. Occupational Medicine (London), 54, 475–482.CrossRef
94.
Zurück zum Zitat Gong, H., Linn, W. S., Terrell, S. L., Anderson, K. R., Clark, K. W., Sioutas, C., et al. (2004). Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhalation Toxicology, 16, 731–744.CrossRefPubMed Gong, H., Linn, W. S., Terrell, S. L., Anderson, K. R., Clark, K. W., Sioutas, C., et al. (2004). Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhalation Toxicology, 16, 731–744.CrossRefPubMed
95.
Zurück zum Zitat Gong, H., Linn, W. S., Clark, K. W., Anderson, K. R., Geller, M. D., & Sioutas, C. (2005). Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhalation Toxicology, 17, 123–132.CrossRefPubMed Gong, H., Linn, W. S., Clark, K. W., Anderson, K. R., Geller, M. D., & Sioutas, C. (2005). Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhalation Toxicology, 17, 123–132.CrossRefPubMed
96.
Zurück zum Zitat Adgent, M. A. (2006). Environmental tobacco smoke and sudden infant death syndrome: A review. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 77, 69–85.CrossRef Adgent, M. A. (2006). Environmental tobacco smoke and sudden infant death syndrome: A review. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 77, 69–85.CrossRef
97.
Zurück zum Zitat Hoppenbrouwers, T., Calub, M., Arakawa, K., & Hodgman, J. E. (1981). Seasonal relationship of sudden infant death syndrome and environmental pollutants. American Journal of Epidemiology, 113, 623–635.PubMed Hoppenbrouwers, T., Calub, M., Arakawa, K., & Hodgman, J. E. (1981). Seasonal relationship of sudden infant death syndrome and environmental pollutants. American Journal of Epidemiology, 113, 623–635.PubMed
98.
Zurück zum Zitat Wang, T., Lang, G. D., Moreno-Vinasco, L., Huang, Y., Goonewardena, S. N., Peng, Y. J., et al. (2012). Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. American Journal of Respiratory Cell and Molecular Biology, 46, 524–531.CrossRefPubMed Wang, T., Lang, G. D., Moreno-Vinasco, L., Huang, Y., Goonewardena, S. N., Peng, Y. J., et al. (2012). Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. American Journal of Respiratory Cell and Molecular Biology, 46, 524–531.CrossRefPubMed
99.
Zurück zum Zitat Perez, C. M., Hazari, M. S., Ledbetter, A. D., Haykal-Coates, N., Carll, A. P., Cascio, W. E., Winsett, D. W., Costa, D. L., & Farraj, A. K. Acrolein inhalation alters arterial blood gases and triggers carotid body mediated cardiovascular responses in hypertensive rats (submitted). Perez, C. M., Hazari, M. S., Ledbetter, A. D., Haykal-Coates, N., Carll, A. P., Cascio, W. E., Winsett, D. W., Costa, D. L., & Farraj, A. K. Acrolein inhalation alters arterial blood gases and triggers carotid body mediated cardiovascular responses in hypertensive rats (submitted).
100.
Zurück zum Zitat Iturriaga, R., Rey, S., & Del Rio, R. (2005). Cardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: A role for the carotid body in the pathophysiology of sleep apnea. Biological Research, 38, 335–340.CrossRefPubMed Iturriaga, R., Rey, S., & Del Rio, R. (2005). Cardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: A role for the carotid body in the pathophysiology of sleep apnea. Biological Research, 38, 335–340.CrossRefPubMed
101.
Zurück zum Zitat Quan, S. F., Gersh, B. J., National Center on Sleep Disorders Research, & National Heart, Lung, and Blood Institute. (2004). Cardiovascular consequences of sleep-disordered breathing: Past, present and future: Report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation, 109, 951–957.CrossRefPubMed Quan, S. F., Gersh, B. J., National Center on Sleep Disorders Research, & National Heart, Lung, and Blood Institute. (2004). Cardiovascular consequences of sleep-disordered breathing: Past, present and future: Report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation, 109, 951–957.CrossRefPubMed
102.
Zurück zum Zitat Halliwill, J. R., Morgan, B. J., & Charkoudian, N. (2003). Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. Journal of Physiology, 552(Pt 1), 295–302.CrossRefPubMedCentralPubMed Halliwill, J. R., Morgan, B. J., & Charkoudian, N. (2003). Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. Journal of Physiology, 552(Pt 1), 295–302.CrossRefPubMedCentralPubMed
103.
Zurück zum Zitat Saito, M., Mano, T., Iwase, S., Koga, K., Abe, H., & Yamazaki, Y. (1988). Responses in muscle sympathetic activity to acute hypoxia in humans. Journal of Applied Physiology, 65(4), 1548–1552.PubMed Saito, M., Mano, T., Iwase, S., Koga, K., Abe, H., & Yamazaki, Y. (1988). Responses in muscle sympathetic activity to acute hypoxia in humans. Journal of Applied Physiology, 65(4), 1548–1552.PubMed
104.
Zurück zum Zitat Halliwill, J. R., & Minson, C. T. (2002). Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. Journal of Applied Physiology, 93(3), 857–864.PubMed Halliwill, J. R., & Minson, C. T. (2002). Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. Journal of Applied Physiology, 93(3), 857–864.PubMed
Metadaten
Titel
Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure
verfasst von
Christina M. Perez
Mehdi S. Hazari
Aimen K. Farraj
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2015
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9272-0

Weitere Artikel der Ausgabe 1/2015

Cardiovascular Toxicology 1/2015 Zur Ausgabe