Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2017

07.06.2016

Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats

verfasst von: Maylla Ronacher Simões, Silvio César Preti, Bruna Fernandes Azevedo, Jonaína Fiorim, David D. Freire Jr., Emilia Polaco Covre, Dalton Valentim Vassallo, Leonardo dos Santos

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Lead (Pb) induces adverse effects when it chronically accumulates in the body, including effects on the nervous and cardiovascular systems. Wistar rats were exposed to lead acetate for 30 days (first dose 4 µg/100 g followed by 0.05 µg/100 g/day, i.m.) to investigate the cardiovascular system impact on the autonomic control. The femoral artery and vein were catheterised to perform hemodynamic evaluations in awake rats: heart rate variability (HRV), baroreflex sensitivity, cardiopulmonary reflex and hemodynamic responses to vagal and sympathetic pharmacological blockade. Rats exposed to Pb exhibited a higher blood pressure and reduced HRV in the time domain when compared to the saline-injected group. Spectral analysis of the HRV in the frequency-domain showed an augmented low-frequency component of the spectrum. Methylatropine and atenolol administration suggest increased sympathetic tone and reduced vagal tone on the control of heart rate. Chronic Pb exposure decreased the sensitivity of the baroreflex without significantly changing the cardiopulmonary reflex. This study demonstrated for the first time in an animal model of a controlled, low-dose chronic lead exposure that cardiovascular changes, such as arterial hypertension, are accompanied by impaired autonomic control of the cardiovascular system, as characterised by reduced baroreflex sensitivity and a sympathovagal imbalance.
Literatur
1.
Zurück zum Zitat Patrick, L. (2006). Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Alternative Medicine Review, 11(1), 2–22.PubMed Patrick, L. (2006). Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Alternative Medicine Review, 11(1), 2–22.PubMed
2.
Zurück zum Zitat Roncal, C., Mu, W., Reungjui, S., Kim, K. M., Henderson, G. N., Ouyang, X., et al. (2007). Lead, at low levels, accelerates arteriolopathy and tubulointerstitial injury in chronic kidney disease. American Journal of Physiology. Renal Physiology, 293(4), F1391–F1396.CrossRefPubMed Roncal, C., Mu, W., Reungjui, S., Kim, K. M., Henderson, G. N., Ouyang, X., et al. (2007). Lead, at low levels, accelerates arteriolopathy and tubulointerstitial injury in chronic kidney disease. American Journal of Physiology. Renal Physiology, 293(4), F1391–F1396.CrossRefPubMed
3.
Zurück zum Zitat Fioresi, M., Simões, M. R., Furieri, L. B., Broseghini-Filho, G. B., Vescovi, M. V., Stefanon, I., & Vassallo, D. V. (2014). Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS One, 9(5), e96900.CrossRefPubMedPubMedCentral Fioresi, M., Simões, M. R., Furieri, L. B., Broseghini-Filho, G. B., Vescovi, M. V., Stefanon, I., & Vassallo, D. V. (2014). Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS One, 9(5), e96900.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat ATSDR (Agency for Toxic Substances and Disease Registry). (2005). Toxicological profile for lead. Annual report. Atlanta: Department of Health and Human Services, Public Health Service. ATSDR (Agency for Toxic Substances and Disease Registry). (2005). Toxicological profile for lead. Annual report. Atlanta: Department of Health and Human Services, Public Health Service.
5.
Zurück zum Zitat Den, H. E., Nawrot, T., & Staessen, J. A. (2002). The relationship between blood pressure and blood lead in NHANES III. National Health and Nutritional Examination Survey. Journal of Human Hypertension, 16, 563–568.CrossRef Den, H. E., Nawrot, T., & Staessen, J. A. (2002). The relationship between blood pressure and blood lead in NHANES III. National Health and Nutritional Examination Survey. Journal of Human Hypertension, 16, 563–568.CrossRef
6.
Zurück zum Zitat Vupputuri, S., He, J., Muntner, P., Bazzano, L. A., Whelton, P. K., & Batuman, V. (2003). Blood lead level is associated with elevated blood pressure in blacks. Hypertension, 41, 463–468.CrossRefPubMed Vupputuri, S., He, J., Muntner, P., Bazzano, L. A., Whelton, P. K., & Batuman, V. (2003). Blood lead level is associated with elevated blood pressure in blacks. Hypertension, 41, 463–468.CrossRefPubMed
7.
Zurück zum Zitat Silveira, E. A., Siman, F. D., de Oliveira Faria, T., Vescovi, M. V., Furieri, L. B., Lizardo, J. H., et al. (2014). Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radical Biology and Medicine, 67, 366–376.CrossRefPubMed Silveira, E. A., Siman, F. D., de Oliveira Faria, T., Vescovi, M. V., Furieri, L. B., Lizardo, J. H., et al. (2014). Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radical Biology and Medicine, 67, 366–376.CrossRefPubMed
8.
Zurück zum Zitat Nunes, K. Z., Nunes, D. O., Silveira, E. A., Cruz Pereira, C. A., Broseghini Filho, G. B., Vassallo, D. V., & Fioresi, M. (2015). Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide. PLoS One, 10(3), e0120965.CrossRefPubMedPubMedCentral Nunes, K. Z., Nunes, D. O., Silveira, E. A., Cruz Pereira, C. A., Broseghini Filho, G. B., Vassallo, D. V., & Fioresi, M. (2015). Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide. PLoS One, 10(3), e0120965.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Simões, M. R., Aguado, A., Fiorim, J., Silveira, E. A., Azevedo, B. F., Toscano, C. M., et al. (2015). MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways. Toxicology and Applied Pharmacology, 283(2), 127–138.CrossRefPubMed Simões, M. R., Aguado, A., Fiorim, J., Silveira, E. A., Azevedo, B. F., Toscano, C. M., et al. (2015). MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways. Toxicology and Applied Pharmacology, 283(2), 127–138.CrossRefPubMed
10.
Zurück zum Zitat Gonick, H. C., Ding, Y., Bondy, S. C., Ni, Z., & Vaziri, N. D. (1997). Lead-induced hypertension: Interplay of nitric oxide and reactive oxygen species. Hypertension, 30(6), 1487–1492.CrossRefPubMed Gonick, H. C., Ding, Y., Bondy, S. C., Ni, Z., & Vaziri, N. D. (1997). Lead-induced hypertension: Interplay of nitric oxide and reactive oxygen species. Hypertension, 30(6), 1487–1492.CrossRefPubMed
11.
Zurück zum Zitat Khalil-Manesh, F., Gonick, H. C., Weiler, E. W., Prins, B., Weber, M. A., & Purdy, R. E. (1993). Lead-induced hypertension: Possible role of endothelial factors. American Journal of Hypertension, 6(9), 723–729.CrossRefPubMed Khalil-Manesh, F., Gonick, H. C., Weiler, E. W., Prins, B., Weber, M. A., & Purdy, R. E. (1993). Lead-induced hypertension: Possible role of endothelial factors. American Journal of Hypertension, 6(9), 723–729.CrossRefPubMed
12.
Zurück zum Zitat Vaziri, N. D., Liang, K., & Ding, Y. (1999). Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney International, 56(4), 1492–1498.CrossRefPubMed Vaziri, N. D., Liang, K., & Ding, Y. (1999). Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney International, 56(4), 1492–1498.CrossRefPubMed
13.
Zurück zum Zitat Simões, M. R., Ribeiro Júnior, R. F., Vescovi, M. V., de Jesus, H. C., Padilha, A. S., Stefanon, I., et al. (2011). Acute lead exposure increases arterial pressure: Role of the renin-angiotensin system. PLoS One, 6(4), e18730.CrossRefPubMedPubMedCentral Simões, M. R., Ribeiro Júnior, R. F., Vescovi, M. V., de Jesus, H. C., Padilha, A. S., Stefanon, I., et al. (2011). Acute lead exposure increases arterial pressure: Role of the renin-angiotensin system. PLoS One, 6(4), e18730.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Tsao, D. A., Yu, H. S., Cheng, J. T., Ho, C. K., & Chang, H. R. (2000). The change of beta-adrenergic system in lead-induced hypertension. Toxicology and Applied Pharmacology, 164(2), 127–133.CrossRefPubMed Tsao, D. A., Yu, H. S., Cheng, J. T., Ho, C. K., & Chang, H. R. (2000). The change of beta-adrenergic system in lead-induced hypertension. Toxicology and Applied Pharmacology, 164(2), 127–133.CrossRefPubMed
15.
Zurück zum Zitat Moreira, F. R., & Moreira, J. C. (2004). Effects of lead exposure on the human body and health implications. Revista Panamericana de Salud Pública, 15(2), 119–129.CrossRefPubMed Moreira, F. R., & Moreira, J. C. (2004). Effects of lead exposure on the human body and health implications. Revista Panamericana de Salud Pública, 15(2), 119–129.CrossRefPubMed
16.
Zurück zum Zitat Stewart, W. F., Schwartz, B. S., Simon, D., Kelsey, K., & Todd, A. C. (2002). ApoE genotype, past adult lead exposure, and neurobehavioral function. Environmental Health Perspectives, 110(5), 501–505.CrossRefPubMedPubMedCentral Stewart, W. F., Schwartz, B. S., Simon, D., Kelsey, K., & Todd, A. C. (2002). ApoE genotype, past adult lead exposure, and neurobehavioral function. Environmental Health Perspectives, 110(5), 501–505.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Poręba, R., Poręba, M., Gać, P., Steinmetz-Beck, A., Beck, B., Pilecki, W., et al. (2011). Electrocardiographic changes in workers occupationally exposed to lead. Annals of Noninvasive Electrocardiology, 16(1), 33–40.CrossRefPubMed Poręba, R., Poręba, M., Gać, P., Steinmetz-Beck, A., Beck, B., Pilecki, W., et al. (2011). Electrocardiographic changes in workers occupationally exposed to lead. Annals of Noninvasive Electrocardiology, 16(1), 33–40.CrossRefPubMed
18.
Zurück zum Zitat Jhun, H. J., Kim, H., & Paek, D. M. (2005). The association between blood metal concentrations and heart rate variability: A crosssectional study. International Archives of Occupational and Environmental Health, 78, 243–247.CrossRefPubMed Jhun, H. J., Kim, H., & Paek, D. M. (2005). The association between blood metal concentrations and heart rate variability: A crosssectional study. International Archives of Occupational and Environmental Health, 78, 243–247.CrossRefPubMed
19.
Zurück zum Zitat Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., & Felaco, M. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sciences, 68(4), 401–415.CrossRefPubMed Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., & Felaco, M. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sciences, 68(4), 401–415.CrossRefPubMed
20.
Zurück zum Zitat Vasquez, E. C., Meyrelles, S. S., Mauad, H., & Cabral, A. M. (1997). Neural reflex regulation of arterial pressure in pathophysiological conditions: Interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Brazilian Journal of Medical and Biological Research, 30(4), 521–532.CrossRefPubMed Vasquez, E. C., Meyrelles, S. S., Mauad, H., & Cabral, A. M. (1997). Neural reflex regulation of arterial pressure in pathophysiological conditions: Interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Brazilian Journal of Medical and Biological Research, 30(4), 521–532.CrossRefPubMed
21.
Zurück zum Zitat Peotta, V. A., Vasquez, E. C., & Meyrelles, S. S. (2001). Cardiovascular neural reflexes in L-NAME-induced hypertension in mice. Hypertension, 38, 555–559.CrossRefPubMed Peotta, V. A., Vasquez, E. C., & Meyrelles, S. S. (2001). Cardiovascular neural reflexes in L-NAME-induced hypertension in mice. Hypertension, 38, 555–559.CrossRefPubMed
22.
Zurück zum Zitat Lacerda, J. E., Consolim-Colombo, F. M., Moreira, E. D., Ida, F., Silva, G. J., Irigoyen, M. C., & Krieger, E. M. (2007). Influence of cardiopulmonary reflex on the sympathetic activity during myocardial infarction. Autonomic Neuroscience, 133(2), 128–135.CrossRefPubMed Lacerda, J. E., Consolim-Colombo, F. M., Moreira, E. D., Ida, F., Silva, G. J., Irigoyen, M. C., & Krieger, E. M. (2007). Influence of cardiopulmonary reflex on the sympathetic activity during myocardial infarction. Autonomic Neuroscience, 133(2), 128–135.CrossRefPubMed
23.
Zurück zum Zitat Lee, H. B., & Blaufox, M. D. (1985). Blood volume in the rat. Journal of Nuclear Medicine, 26(1), 72–76.PubMed Lee, H. B., & Blaufox, M. D. (1985). Blood volume in the rat. Journal of Nuclear Medicine, 26(1), 72–76.PubMed
24.
Zurück zum Zitat Fiorim, J., Ribeiro Junior, R. F., Silveira, E. A., Padilha, A. S., Vescovi, M. V., de Jesus, H. C., et al. (2011). Low-level lead exposure increases systolic arterial pressure and endothelium-derived vasodilator factors in rat aortas. PLoS One, 6(2), e17117.CrossRefPubMedPubMedCentral Fiorim, J., Ribeiro Junior, R. F., Silveira, E. A., Padilha, A. S., Vescovi, M. V., de Jesus, H. C., et al. (2011). Low-level lead exposure increases systolic arterial pressure and endothelium-derived vasodilator factors in rat aortas. PLoS One, 6(2), e17117.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Oliveira, L. R., de Melo, V. U., Macedo, F. N., Barreto, A. S., Badaue-Passos, D, Jr., Viana dos Santos, M. R., et al. (2012). Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats. Autonomic Neuroscience, 167, 45–49.CrossRefPubMedPubMedCentral Oliveira, L. R., de Melo, V. U., Macedo, F. N., Barreto, A. S., Badaue-Passos, D, Jr., Viana dos Santos, M. R., et al. (2012). Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats. Autonomic Neuroscience, 167, 45–49.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Fazan, R, Jr., de Oliveira, M., Oliveira, J. A., Salgado, H. C., & Garcia-Cairasco, N. (2011). Changes in autonomic control of the cardiovascular system in the Wistar audiogenic rat (WAR) strain. Epilepsy & Behavior, 22, 666–670.CrossRef Fazan, R, Jr., de Oliveira, M., Oliveira, J. A., Salgado, H. C., & Garcia-Cairasco, N. (2011). Changes in autonomic control of the cardiovascular system in the Wistar audiogenic rat (WAR) strain. Epilepsy & Behavior, 22, 666–670.CrossRef
27.
Zurück zum Zitat Sharp, D. S., Becker, C. E., & Smith, A. H. (1987). Chronic low-level lead exposure. Its role in the pathogenesis of hypertension. Medical Toxicology, 2(3), 210–232.CrossRefPubMed Sharp, D. S., Becker, C. E., & Smith, A. H. (1987). Chronic low-level lead exposure. Its role in the pathogenesis of hypertension. Medical Toxicology, 2(3), 210–232.CrossRefPubMed
28.
Zurück zum Zitat Hertz-Picciotto, I., & Croft, J. (1993). Review of the relation between blood lead and blood pressure. Epidemiologic Reviews, 15(2), 352–373.CrossRefPubMed Hertz-Picciotto, I., & Croft, J. (1993). Review of the relation between blood lead and blood pressure. Epidemiologic Reviews, 15(2), 352–373.CrossRefPubMed
29.
Zurück zum Zitat Silveira, E. A., Lizardo, J. H., Souza, L. P., Stefanon, I., & Vassallo, D. V. (2010). Acute lead-induced vasoconstriction in the vascular beds of isolated perfused rat tails is endothelium-dependent. Brazilian Journal of Medical and Biological Research, 43(5), 492–499.CrossRefPubMed Silveira, E. A., Lizardo, J. H., Souza, L. P., Stefanon, I., & Vassallo, D. V. (2010). Acute lead-induced vasoconstriction in the vascular beds of isolated perfused rat tails is endothelium-dependent. Brazilian Journal of Medical and Biological Research, 43(5), 492–499.CrossRefPubMed
30.
Zurück zum Zitat Lai, C. C., Lin, H. H., Chen, C. W., Chen, S. H., & Chiu, T. H. (2002). Excitatory action of lead on rat sympathetic preganglionic neurons in vitro and in vivo. Life Sciences, 71(9), 1035–1045.CrossRefPubMed Lai, C. C., Lin, H. H., Chen, C. W., Chen, S. H., & Chiu, T. H. (2002). Excitatory action of lead on rat sympathetic preganglionic neurons in vitro and in vivo. Life Sciences, 71(9), 1035–1045.CrossRefPubMed
31.
Zurück zum Zitat Chapleau, M. W., Li, Z., Meyrelles, S. S., Ma, X., & Abboud, F. M. (2001). Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Annals of the New York Academy of Sciences, 940, 1–19.CrossRefPubMed Chapleau, M. W., Li, Z., Meyrelles, S. S., Ma, X., & Abboud, F. M. (2001). Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Annals of the New York Academy of Sciences, 940, 1–19.CrossRefPubMed
32.
Zurück zum Zitat Lanfranchi, P. A., & Somers, V. K. (2002). Arterial baroreflex function and cardiovascular variability: interactions and implications. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283, R815–R826.CrossRefPubMed Lanfranchi, P. A., & Somers, V. K. (2002). Arterial baroreflex function and cardiovascular variability: interactions and implications. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283, R815–R826.CrossRefPubMed
33.
Zurück zum Zitat Weston, P. J., Panerai, R. B., McCullough, A., McNally, P. G., James, M. A., Potter, J. F., et al. (1996). Assessment of baroreceptor-cardiac reflex sensitivity using time domain analysis in patients with IDDM and the relation to left ventricular mass index. Diabetologia, 39, 1385–1391.CrossRefPubMed Weston, P. J., Panerai, R. B., McCullough, A., McNally, P. G., James, M. A., Potter, J. F., et al. (1996). Assessment of baroreceptor-cardiac reflex sensitivity using time domain analysis in patients with IDDM and the relation to left ventricular mass index. Diabetologia, 39, 1385–1391.CrossRefPubMed
34.
Zurück zum Zitat Parati, G., & Esler, M. (2012). The human sympathetic nervous system: Its relevance in hypertension and heart failure. European Heart Journal, 33, 1058–1066.CrossRefPubMed Parati, G., & Esler, M. (2012). The human sympathetic nervous system: Its relevance in hypertension and heart failure. European Heart Journal, 33, 1058–1066.CrossRefPubMed
35.
Zurück zum Zitat Cardoso, L. M., Fernandes, L. G., Alves, A. M., Pedrosa, M. L., Silva, M. E., Colombari, E., et al. (2007). Cardiopulmonary reflex is attenuated in iron overload conscious rats. Nutritional Neuroscience, 10(3–4), 121–128.CrossRefPubMed Cardoso, L. M., Fernandes, L. G., Alves, A. M., Pedrosa, M. L., Silva, M. E., Colombari, E., et al. (2007). Cardiopulmonary reflex is attenuated in iron overload conscious rats. Nutritional Neuroscience, 10(3–4), 121–128.CrossRefPubMed
36.
Zurück zum Zitat Carmignani, M., Finelli, V. N., & Boscolo, P. (1983). Mechanisms in cardiovascular regulation following chronic exposure of male rats to inorganic mercury. Toxicology and Applied Pharmacology, 69(3), 442–450.CrossRefPubMed Carmignani, M., Finelli, V. N., & Boscolo, P. (1983). Mechanisms in cardiovascular regulation following chronic exposure of male rats to inorganic mercury. Toxicology and Applied Pharmacology, 69(3), 442–450.CrossRefPubMed
37.
Zurück zum Zitat Germanó, D., Pochiero, M., Romeo, G., Nunziata, A., Costa, G., & Caputi, A. P. (1984). Cadmium alters arterial baroreflex control of heart rate in the conscious rat. Archives of Toxicology, 7, 374–377.CrossRefPubMed Germanó, D., Pochiero, M., Romeo, G., Nunziata, A., Costa, G., & Caputi, A. P. (1984). Cadmium alters arterial baroreflex control of heart rate in the conscious rat. Archives of Toxicology, 7, 374–377.CrossRefPubMed
38.
39.
Zurück zum Zitat Iannaccone, A., Boscolo, P., & Carmignani, M. (1981). Neurogenic and humoral mechanisms in arterial hypertension of chronically lead-exposed rats. Medicina del Lavoro, 72, 13–21.PubMed Iannaccone, A., Boscolo, P., & Carmignani, M. (1981). Neurogenic and humoral mechanisms in arterial hypertension of chronically lead-exposed rats. Medicina del Lavoro, 72, 13–21.PubMed
40.
Zurück zum Zitat Carmignani, M., Boscolo, P., Marchetti, P., & Iannaccone, A. (1980). Neurogenic components in cardiovascular reactivity of chronically lead-exposed rats. Developments in Toxicology and Environmental Science, 8, 595–598.PubMed Carmignani, M., Boscolo, P., Marchetti, P., & Iannaccone, A. (1980). Neurogenic components in cardiovascular reactivity of chronically lead-exposed rats. Developments in Toxicology and Environmental Science, 8, 595–598.PubMed
41.
Zurück zum Zitat Casadei, B., & Paterson, D. J. (2000). Should we still use nitrovasodilators to test baroreflex sensitivity? Journal of Hypertension, 18(1), 3–6.CrossRefPubMed Casadei, B., & Paterson, D. J. (2000). Should we still use nitrovasodilators to test baroreflex sensitivity? Journal of Hypertension, 18(1), 3–6.CrossRefPubMed
42.
Zurück zum Zitat Sener, A., & Smith, F. G. (2001). Nitric oxide modulates arterial baroreflex control of heart rate in conscious lambs in an age-dependent manner. American Journal of Physiology Heart and Circulatory Physiology, 280(5), H2255–H2263.PubMed Sener, A., & Smith, F. G. (2001). Nitric oxide modulates arterial baroreflex control of heart rate in conscious lambs in an age-dependent manner. American Journal of Physiology Heart and Circulatory Physiology, 280(5), H2255–H2263.PubMed
43.
Zurück zum Zitat Schwarz, P., Diem, R., Dun, N. J., & Forstermann, U. (1995). Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circulation Research, 77, 841–848.CrossRefPubMed Schwarz, P., Diem, R., Dun, N. J., & Forstermann, U. (1995). Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circulation Research, 77, 841–848.CrossRefPubMed
44.
Zurück zum Zitat Reddy, G. R., Davi, B. C., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology, 28(2), 402–407.CrossRefPubMed Reddy, G. R., Davi, B. C., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology, 28(2), 402–407.CrossRefPubMed
45.
Zurück zum Zitat Borisova, T., Krisanova, N., Sivko, R., Kasatkina, L., Borysov, A., Griffin, S., & Wireman, M. (2011). Presynaptic malfunction: The neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport. Neurochemistry International, 59(2), 272–279.CrossRefPubMed Borisova, T., Krisanova, N., Sivko, R., Kasatkina, L., Borysov, A., Griffin, S., & Wireman, M. (2011). Presynaptic malfunction: The neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport. Neurochemistry International, 59(2), 272–279.CrossRefPubMed
46.
Zurück zum Zitat Averill, D. B., & Diz, D. I. (2000). Angiotensin peptides and the baroreflex control of sympathetic outflow: Pathways and mechanisms of the medulla oblongata. Brain Research Bulletin, 51(2), 119–128.CrossRefPubMed Averill, D. B., & Diz, D. I. (2000). Angiotensin peptides and the baroreflex control of sympathetic outflow: Pathways and mechanisms of the medulla oblongata. Brain Research Bulletin, 51(2), 119–128.CrossRefPubMed
47.
Zurück zum Zitat Phillips, M. I., & Sumners, C. (1998). Angiotensin II in central nervous system physiology. Regulatory Peptides, 78, 1–11.CrossRefPubMed Phillips, M. I., & Sumners, C. (1998). Angiotensin II in central nervous system physiology. Regulatory Peptides, 78, 1–11.CrossRefPubMed
48.
Zurück zum Zitat Carmignani, M., Boscolo, P., Poma, A., & Volpe, A. R. (1999). Kininergic system and arterial HTN following chronic exposure to inorganic lead. Immunopharmacology, 44, 105–110.CrossRefPubMed Carmignani, M., Boscolo, P., Poma, A., & Volpe, A. R. (1999). Kininergic system and arterial HTN following chronic exposure to inorganic lead. Immunopharmacology, 44, 105–110.CrossRefPubMed
49.
Zurück zum Zitat Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiologic interpretation and clinical use. Circulation, 93, 1043–1065.CrossRef Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiologic interpretation and clinical use. Circulation, 93, 1043–1065.CrossRef
50.
Zurück zum Zitat Malliani, A., Lombardi, F., & Pagani, M. (1994). Power spectrum analysis of heart rate variability: A tool to explore neural regulatory mechanisms. British Heart Journal, 71, 1–2.CrossRefPubMedPubMedCentral Malliani, A., Lombardi, F., & Pagani, M. (1994). Power spectrum analysis of heart rate variability: A tool to explore neural regulatory mechanisms. British Heart Journal, 71, 1–2.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Feng, W., He, X., Chen, M., Deng, S., Qiu, G., Li, X., et al. (2015). Urinary metals and heart rate variability: A cross-sectional study of urban adults in Wuhan. China. Environmental Health Perspectives, 123(3), 217–222.PubMed Feng, W., He, X., Chen, M., Deng, S., Qiu, G., Li, X., et al. (2015). Urinary metals and heart rate variability: A cross-sectional study of urban adults in Wuhan. China. Environmental Health Perspectives, 123(3), 217–222.PubMed
52.
Zurück zum Zitat Böckelmann, I., Pfister, E., & Darius, S. (2011). Early effects of long-term neurotoxic lead exposure in copper works employees. Journal of Toxicology, 2011, 832519.CrossRefPubMedPubMedCentral Böckelmann, I., Pfister, E., & Darius, S. (2011). Early effects of long-term neurotoxic lead exposure in copper works employees. Journal of Toxicology, 2011, 832519.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Moraes, O. A., Colucci, J. A., Souza, L. E., Scapini, K. B., Moraes-Silva, I. C., Mostarda, C., et al. (2013). Cardiovascular autonomic dysfunction in non-obese diabetic mice. Autonomic Neuroscience, 177, 143–147.CrossRefPubMed Moraes, O. A., Colucci, J. A., Souza, L. E., Scapini, K. B., Moraes-Silva, I. C., Mostarda, C., et al. (2013). Cardiovascular autonomic dysfunction in non-obese diabetic mice. Autonomic Neuroscience, 177, 143–147.CrossRefPubMed
54.
Zurück zum Zitat Presciuttini, B., Duprez, D., De Buyzere, M., & Clement, D. L. (1998). How to study sympatho-vagal balance in arterial hypertension and the effect of antihypertensive drugs? Acta Cardiologica, 53, 143–152.PubMed Presciuttini, B., Duprez, D., De Buyzere, M., & Clement, D. L. (1998). How to study sympatho-vagal balance in arterial hypertension and the effect of antihypertensive drugs? Acta Cardiologica, 53, 143–152.PubMed
55.
Zurück zum Zitat Kleiger, R. E., Stein, P. K., & Bigger, J. T, Jr. (2005). Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10, 88–101.CrossRefPubMed Kleiger, R. E., Stein, P. K., & Bigger, J. T, Jr. (2005). Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10, 88–101.CrossRefPubMed
56.
Zurück zum Zitat Cabral, A. M., & Vasquez, E. C. (1991). Time course of cardiac sympathetic and vagal tone changes in renovascular hypertensive rats. American Journal of Hypertension, 4, 815–819.CrossRefPubMed Cabral, A. M., & Vasquez, E. C. (1991). Time course of cardiac sympathetic and vagal tone changes in renovascular hypertensive rats. American Journal of Hypertension, 4, 815–819.CrossRefPubMed
57.
Zurück zum Zitat Wang, J., Wu, J., & Zhang, Z. (2006). Oxidative stress in mouse brain exposed to lead. The Annals of occupational hygiene, 50(4), 405–409.PubMed Wang, J., Wu, J., & Zhang, Z. (2006). Oxidative stress in mouse brain exposed to lead. The Annals of occupational hygiene, 50(4), 405–409.PubMed
58.
Zurück zum Zitat Shin, C. Y., Choi, J. W., Choi, M. S., Ryu, J. R., Ko, K. H., & Cheong, J. H. (2007). Developmental changes of the activity of monoamine oxidase in pre- and postnatally lead exposed rats. Environmental Toxicology and Pharmacology, 24(1), 5–10.CrossRefPubMed Shin, C. Y., Choi, J. W., Choi, M. S., Ryu, J. R., Ko, K. H., & Cheong, J. H. (2007). Developmental changes of the activity of monoamine oxidase in pre- and postnatally lead exposed rats. Environmental Toxicology and Pharmacology, 24(1), 5–10.CrossRefPubMed
59.
Zurück zum Zitat Xu, J., Yan, C. H., Yang, B., Xie, H. F., Zou, X. Y., Zhong, L., et al. (2009). The role of metabotropic glutamate receptor 5 in developmental lead neurotoxicity. Toxicology Letters, 191(2–3), 223–230.CrossRefPubMed Xu, J., Yan, C. H., Yang, B., Xie, H. F., Zou, X. Y., Zhong, L., et al. (2009). The role of metabotropic glutamate receptor 5 in developmental lead neurotoxicity. Toxicology Letters, 191(2–3), 223–230.CrossRefPubMed
60.
Zurück zum Zitat Guimarães, D., Santos, J. P., Carvalho, M. L., Diniz, M. S., House, B., & Miller, V. M. (2014). Analytical evidence of heterogeneous lead accumulation in the hypothalamic defence area and nucleus tractus solitarius. Neurotoxicology, 44, 91–97.CrossRefPubMed Guimarães, D., Santos, J. P., Carvalho, M. L., Diniz, M. S., House, B., & Miller, V. M. (2014). Analytical evidence of heterogeneous lead accumulation in the hypothalamic defence area and nucleus tractus solitarius. Neurotoxicology, 44, 91–97.CrossRefPubMed
61.
Zurück zum Zitat Lin, L. H., Moore, S. A., Jones, S. Y., McGlashon, J., & Talman, W. T. (2013). Astrocytes in the rat nucleus tractus solitarii are critical for cardiovascular reflex control. The Journal of Neuroscience, 33(47), 18608–18617.CrossRefPubMedPubMedCentral Lin, L. H., Moore, S. A., Jones, S. Y., McGlashon, J., & Talman, W. T. (2013). Astrocytes in the rat nucleus tractus solitarii are critical for cardiovascular reflex control. The Journal of Neuroscience, 33(47), 18608–18617.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Botelho-Ono, M. S., Pina, H. V., Sousa, K. H., Nunes, F. C., Medeiros, I. A., & Braga, V. A. (2011). Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats. Autonomic Neuroscience, 159(1–2), 38–44.CrossRefPubMed Botelho-Ono, M. S., Pina, H. V., Sousa, K. H., Nunes, F. C., Medeiros, I. A., & Braga, V. A. (2011). Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats. Autonomic Neuroscience, 159(1–2), 38–44.CrossRefPubMed
63.
Zurück zum Zitat Prentice, R. C., & Kopp, S. J. (1985). Cardiotoxicity of lead at various perfusate calcium concentrations: Functional and metabolic responses of the perfused rat heart. Toxicology and Applied Pharmacology, 81, 491–501.CrossRefPubMed Prentice, R. C., & Kopp, S. J. (1985). Cardiotoxicity of lead at various perfusate calcium concentrations: Functional and metabolic responses of the perfused rat heart. Toxicology and Applied Pharmacology, 81, 491–501.CrossRefPubMed
64.
Zurück zum Zitat Fioresi, M., Furieri, L. B., Simões, M. R., Ribeiro, R. F, Jr., Meira, E. F., Fernandes, A. A., et al. (2013). Acute exposure to lead increases myocardial contractility independent of hypertension development. Brazilian Journal of Medical and Biological Research, 46(2), 178–185.CrossRefPubMedPubMedCentral Fioresi, M., Furieri, L. B., Simões, M. R., Ribeiro, R. F, Jr., Meira, E. F., Fernandes, A. A., et al. (2013). Acute exposure to lead increases myocardial contractility independent of hypertension development. Brazilian Journal of Medical and Biological Research, 46(2), 178–185.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Vassallo, D. V., Lebarch, E. C., Moreira, C. M., Wiggers, G. A., & Stefanon, I. (2008). Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium. Brazilian Journal of Medical and Biological Research, 41(9), 789–795.CrossRefPubMed Vassallo, D. V., Lebarch, E. C., Moreira, C. M., Wiggers, G. A., & Stefanon, I. (2008). Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium. Brazilian Journal of Medical and Biological Research, 41(9), 789–795.CrossRefPubMed
66.
67.
Zurück zum Zitat Scott, B., & Lew, J. (1985). Chronic exposure to lead causes persistent alterations in the electric membrane properties of neurons in cell culture. Journal of Neurobiology, 16(6), 425–433.CrossRefPubMed Scott, B., & Lew, J. (1985). Chronic exposure to lead causes persistent alterations in the electric membrane properties of neurons in cell culture. Journal of Neurobiology, 16(6), 425–433.CrossRefPubMed
68.
Zurück zum Zitat Szücs, A., Salánki, J., & Rózsa, K. S. (1994). Effects of chronic exposure to cadmium- or lead-enriched environments on ionic currents of identified neurons in Lymnaea stagnalis L. Cellular and Molecular Neurobiology, 14(6), 769–780.CrossRefPubMed Szücs, A., Salánki, J., & Rózsa, K. S. (1994). Effects of chronic exposure to cadmium- or lead-enriched environments on ionic currents of identified neurons in Lymnaea stagnalis L. Cellular and Molecular Neurobiology, 14(6), 769–780.CrossRefPubMed
69.
Zurück zum Zitat Fiorim, J., Ribeiro, R. F, Jr., Azevedo, B. F., Simões, M. R., Padilha, A. S., Stefanon, I., et al. (2012). Activation of K+ channels and Na+/K+ ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats. Toxicology and Applied Pharmacology, 262(1), 22–31.CrossRefPubMed Fiorim, J., Ribeiro, R. F, Jr., Azevedo, B. F., Simões, M. R., Padilha, A. S., Stefanon, I., et al. (2012). Activation of K+ channels and Na+/K+ ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats. Toxicology and Applied Pharmacology, 262(1), 22–31.CrossRefPubMed
70.
Zurück zum Zitat Kempe, D. S., Lang, P. A., Eisele, K., Klarl, B. A., Wieder, T., Huber, S. M., et al. (2005). Stimulation of erythrocyte phosphatidylserine exposure by lead ions. American Journal of Physiology. Cell Physiology, 288(2), C396–C402.CrossRefPubMed Kempe, D. S., Lang, P. A., Eisele, K., Klarl, B. A., Wieder, T., Huber, S. M., et al. (2005). Stimulation of erythrocyte phosphatidylserine exposure by lead ions. American Journal of Physiology. Cell Physiology, 288(2), C396–C402.CrossRefPubMed
Metadaten
Titel
Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats
verfasst von
Maylla Ronacher Simões
Silvio César Preti
Bruna Fernandes Azevedo
Jonaína Fiorim
David D. Freire Jr.
Emilia Polaco Covre
Dalton Valentim Vassallo
Leonardo dos Santos
Publikationsdatum
07.06.2016
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2017
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9374-y

Weitere Artikel der Ausgabe 2/2017

Cardiovascular Toxicology 2/2017 Zur Ausgabe