Skip to main content
Log in

Novel inhibitors of glycation and AGE formation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Accelerated formation of advanced glycation/lipoxidation and endproducts (AGEs/ALEs) has been implicated in the pathogenesis of various diabetic complications. Several natural and synthetic compounds have been proposed and tested as inhibitors of AGE/ALE formation. We have previously reported the therapeutic effects of several new AGE/ALE inhibitors on the prevention of nephropathy and dyslipidemia in streptozotocin (STZ)-induced diabetic rats. In this study, we investigated the effects of various concentrations of a compound, LR-90, on the progression of renal disease and its effects on AGE and receptor for AGE (RAGE) protein expression on the kidneys of diabetic STZ-rats. Diabetic male Sprague–Dawley rats were treated with or without LR-90 (0, 5, 20, 25, and 50 mg/l of drinking water). After 32 weeks, body weight, glycemic status, renal function, and plasma lipids were measured. Kidney histopathology and AGE/ALE accumulation and RAGE protein expression in tissues were also determined. In vitro studies were also performed to determine the possible mechanism of action of LR-90 in inhibiting AGE formation and AGE-protein cross-linking. LR-90 protected the diabetic kidneys by inhibiting the increase in urinary albumin-to-creatinine ratio and ameliorated hyperlipidemia in diabetic rats in a concentration-dependent fashion without any effects on hyperglycemia. LR-90 treatment also reduced kidney AGE/ALE accumulation and RAGE protein expression in a concentration-dependent manner. In vitro, LR-90 exhibited general antioxidant properties by inhibiting metal-catalyzed reactions and reactive oxygen species (·OH radical) and reactive carbonyl species (methlyglyoxal, glyoxal) generations without any effect on pyridoxal 5′ phosphate. The compound also prevents AGE-protein cross-linking reactions. These findings demonstrate the bioefficacy of LR-90 in treating nephropathy and hyperlipidemia in diabetic animals by inhibiting AGE accumulation, RAGE protein expression, and protein oxidation in the diabetic kidney. Additionally, our study suggests that LR-90 may be useful also to delay the onset and progression of diabetic atherosclerosis as the compound can inhibit the expression of RAGE and inflammation-related pathology, as well as prevent lipid peroxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACR:

Albumin-to-creatinine ratio

AGEs:

Advanced glycation endproducts

ALEs:

Advanced lipoxidation endproducts

CML:

Nε-(carboxymethyl)lysine

LDL:

Low density lipoprotein

RAGE:

Receptor for advanced glycation endproducts

RCS:

Reactive carbonyl species

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

References

  1. Brownlee, M. (1995). Advanced protein glycosylation in diabetes and aging. Annual Review of Medicine, 46, 223–234.

    Article  PubMed  CAS  Google Scholar 

  2. Frye, B., Degenhardt, T. P., Thorpe, S. R., & Baynes, J. W. (1998). Role of Mailard reaction in aging of tissue proteins: age-dependent increase in imidazolium crosslinks in human lens protein. The Journal of Biological Chemistry, 273, 18714–18719.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, M. M., Requena, J. R., Crawley, J. R., Thorpe, S. R., & Heinecke, J. W. (1999). The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins. The Journal of Clinical Investigation, 104, 103–113.

    PubMed  CAS  Google Scholar 

  4. Munch, G., Shepherd, S. E., McCann, H., Brooks, W. S., Kwok, J. B., Arendt, T., Hallupp, M., Schofield, P. R., Martins, R. N., & Halliday, G. M. (2002). Intraneuronal advanced glycation endproducts is present in Alzheimer’s disease. Neuroreport, 13, 601–604.

    Article  PubMed  Google Scholar 

  5. Stitt, A. W., He, C., Friedman, S., Scher, L., Rossi, P., Ong, L., Founds, H., Li, Y. M., Bucala, R., & Vlassara, H. (1997). Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: Relationship to tissue AGEs. Molecular Medicine, 3, 617–627.

    PubMed  CAS  Google Scholar 

  6. Nagai, R., Hayashi, C. M., Xia, L., Takeya, M., & Horiuchi, S. (2002). Identification in human atherosclerotic lesions of GA-pyridine. The Journal of Biological Chemistry, 277, 48905–48912.

    Article  PubMed  CAS  Google Scholar 

  7. Baynes, J. W. (2002). The Maillard hypothesis on aging; time to focus on DNA. Annals of the New York Academy of Sciences, 959, 360–367.

    Article  PubMed  CAS  Google Scholar 

  8. Halliwell, B. (1989). Protection against tissue damage in vivo by desferrioxamine. Free Radicals in Biology and Medicine, 7, 645–651.

    Article  CAS  Google Scholar 

  9. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease and oxidative stress. The Journal of Biological Chemistry, 272, 20313–20316.

    Article  PubMed  CAS  Google Scholar 

  10. Thornally, P. J., Langborg, A., & Minhas, H. S. (1999). Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. The Biochemical Journal, 344, 109–116.

    Article  Google Scholar 

  11. Ahmed, N. (2005). Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3–21.

    Article  PubMed  CAS  Google Scholar 

  12. Vlassara, H., & Palace, M. R. (2002). Diabetes and advanced glycation endproducts. Journal of Internal Medicine, 251, 87–101.

    Article  PubMed  CAS  Google Scholar 

  13. Rojas, A., & Morales, M. A. (2004). Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sciences, 76, 715–730.

    Article  PubMed  CAS  Google Scholar 

  14. Yamagishi, S., & Imaizumi, T. (2005). Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharmaceutical Design, 11, 2279–2299.

    Article  PubMed  CAS  Google Scholar 

  15. Basta, G., Schmidt, A. M., & De Caterina, R. (2004). Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovascular Research, 63, 582–592.

    Article  PubMed  CAS  Google Scholar 

  16. Jakus, V, & Rietbrock, N. (2004). Advanced glycation end-products and the progress of diabetic vascular complications. Physiological Research, 53, 1131–1142.

    Google Scholar 

  17. DeGroot, J. (2004). The AGE of the matrix: chemistry, consequence and cure. Current Opinion in Pharmacology, 4, 301–305.

    Article  PubMed  CAS  Google Scholar 

  18. Rosca, M. G., Mustata, T. G., Kinter, M. T., Oxdemir, A. M., Kern, T. S., Szweda, L. I., Brownlee, M., Monnier, V. M., & Weiss, M. F. (2005). Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. American Journal of Physiology. Renal Physiology, 289, F420–F430.

    Article  PubMed  CAS  Google Scholar 

  19. Schmidt, A. M., Hori, O., Brett, J., Yan, S. D., Wautier, J. L., & Stern, D. (1994). Cellular receptors for advanced glycation endproducts: Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arteriosclerosis and Thrombosis, 14, 1521–1528.

    PubMed  CAS  Google Scholar 

  20. Vlassara, H. (2001). The AGE-receptor in the pathogenesis of diabetic complications. Diabetes/Metabolism Research and Reviews, 17, 436–443.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt, A. M., Yan, S. D., Yan, S. F., & Stern, D. M. (2000). The biology of the receptor for advanced glycation end products and its ligands. Biochemistry and Biophysics, 1498, 99–111.

    CAS  Google Scholar 

  22. Kim, W., Hudson, B., Moser, B., Guo, J., Rong, L. L., Lu, Y., Qu, W., Lalla, E., Lerner, S., Chen, Y., Yan, S. S., D’Agati V., Naka, Y., Ramasamy, R., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Receptor for advanced glycation end products and its ligands: A journey from the complications of diabetes to its pathogenesis. Annals of the New York Academy of Sciences, 1043, 553–561.

    Article  PubMed  CAS  Google Scholar 

  23. Bucciarelli, L. G., Wendt, T., Rong, L. L., Goova, M. T., Moser, B., Kislinger, T., Lee, D. C., Kashyap, Y., Stern, D. M., & Schmidt, A. M. (2002). RAGE is a multiligand receptor of the immunoglobulin superfamily: Implications for homeostasis and chronic disease. Cellular and Molecular Life Sciences, 59, 1117–1128.

    Article  PubMed  CAS  Google Scholar 

  24. Basta, G., Lazzerini, G., Massaro, M., Simoncini, T., Tanganelli, P., Fu, C, Kislinger, T., Stern, D. M., Schmidt, A. M., & De Caterina, R. (2002). Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: A mechanism for amplification of inflammatory responses. Circulation, 105, 816–822.

    Article  PubMed  CAS  Google Scholar 

  25. Chavakis, T., Bierhaus, A., & Nawroth, P. P. (2004). RAGE (receptor for advanced glycation end products): A central player in the inflammatory response. Microbes and Infection, 6, 1219–1225.

    Article  PubMed  CAS  Google Scholar 

  26. Liliensiek, B., Weigand, M. A., Bierhaus, A., Nicklas, W., Kasper, M., Hofer, S., Plachky, J., Grone, H. J., Kurschus, F. C., Schmidt, A. M., Yan, S. D., Martin, E., Schleicher, E., Stern, D. M., Hammerling, G. G., Nawroth, P. P., Arnold, B. (2004). Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. The Journal of Clinical Investigation, 113, 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  27. Wautier, J. L., & Schmidt, A. M. (2004). Protein glycation: A firm link to endothelial cell dysfunction. Circulation Research, 95, 233–238.

    Article  PubMed  CAS  Google Scholar 

  28. Ramasamy, R., Vannucci, S. J., Yan, S. S., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 15, 16R–28R.

    Article  PubMed  CAS  Google Scholar 

  29. Hudson, B. I., & Schmidt, A. M. (2005). RAGE: A novel target for drug intervention in diabetic vascular disease. Pharmaceutical Research, 21, 1079–1086.

    Article  Google Scholar 

  30. Park, L., Raman, K. G., Lee, K. J., Lu, Y., Ferran, L. J. Jr., Chow, W. S., Stern, D., & Schmidt, A. M. (1998). Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nature Medicine, 4, 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  31. Bucciarelli, L. G., Wendt, T., Qu, W., Lu, Y., Lalla, E., Rong, L. L., Goova, M. T., Moser, B., Kislinger, T., Lee, D. C., Kashyap, Y., Stern, D. M., & Schmidt, A. M. (2001). RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation, 106, 2827–2835.

    Article  Google Scholar 

  32. Rong, L. L., Trojaborg, W., Qu, W., Kostov, K., Yan, S. D., Gooch, C., Szabolcs, M., Hays, A. P., & Schmidt, A. M. (2004). Antagonism of RAGE suppresses peripheral nerve regeneration. The FASEB Journal, 18, 11812–11817.

    Google Scholar 

  33. Marx, N., Walcher, D., Ivanova, N., Rautzenberg, K., Jung, A., Friedl, R., Hombach, V., de Caterina, R., Basta, G., Wautier, M. P., & Wautiers, J. L. (2004). Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products. Diabetes, 53, 2662–2668.

    Article  PubMed  CAS  Google Scholar 

  34. Rahbar, S., & Figarola, J. L. (2003). Novel inhibitors of advanced glycation endproducts. Archives of Biochemistry and Biophysics, 419, 63–79.

    Article  PubMed  CAS  Google Scholar 

  35. Figarola, J. L., Scott, S., Loera, S., Tessler, C., Chu, P., Weiss, L., Hardy, J., & Rahbar, S. (2001). LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia, 46, 1140–1152.

    Google Scholar 

  36. Figarola, J. L., Scott, S., Loera, S., Xi, B., Synold, T., Weiss, L., & Rahbar, S. (2005). Prevention of early renal disease, dyslipidemia and lipid peroxidation in STZ-diabetic rats by LR-9 and LR-74, novel AGE inhibitors. Diabetes/Metabolism Research and Reviews, 21, 533–544.

    Article  PubMed  CAS  Google Scholar 

  37. Miyata, T., van Ypersele de Strihou, C., Ueda, Y., Ichimori, K., Inagi, R., Onogi, H., Ishikawa, N., Nangaku, M., & Kurokawa, K. (2002). Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: Biochemical mechanisms. Journal of the American Society of Nephrology, 13, 2478–2487.

    Article  PubMed  CAS  Google Scholar 

  38. Wolff, S. P. (1993). Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. British Medical Bulletin, 49, 642–652.

    PubMed  CAS  Google Scholar 

  39. Kennedy, A. L., & Lyons, T. J. (1997). Glycation, oxidation, and lipoxidation in the development of diabetic complications. Metabolism, 46, 14–21.

    Article  PubMed  CAS  Google Scholar 

  40. Kim, W., Hudson, B., Moser, B., Guo, J., Rong, L. L., Lu, Y., Qu, W., Lalla, E., Lerner, S., Chen, Y., Yan, S. S., D’Agati V., Naka, Y., Ramasamy, R., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Receptor for advanced glycation end products and its ligands: A journey from the complications of diabetes to its pathogenesis. Annals of the New York Academy of Sciences, 1043, 553–561.

    Article  PubMed  CAS  Google Scholar 

  41. Yamamoto, Y., Kato, I., Doi, T., Yonekura, H., Ohashi, S., Takeuchi, M., Watanabe, T., Yamagishi, S., Sakurai, S., Takasawa, S., Okamoto, H., & Yamamoto, H. (2001). Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. The Journal of Clinical Investigation, 108, 261–268.

    Article  PubMed  CAS  Google Scholar 

  42. Wendt, T. M., Tanji, N., Guo, J., Kislinger, T. R., Qu, W., Lu, Y., Bucciarelli, L. G., Rong, L. L., Moser, B., Markowitz, G. S., Stein, G., Bierhaus, A., Liliensiek, B., Arnold, B., Nawroth, P. P., Stern, D. M., D’Agati V. D., & Schmidt, A. M. (2003). RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. The American Journal of Pathology, 162, 1123–1137.

    PubMed  CAS  Google Scholar 

  43. Heidland, A., Sebekova, K., Schinzel, R. (2001). Advanced glycation end products and the progressive course of renal disease. American Journal of Kidney Diseases, 38, S100–S106.

    PubMed  CAS  Google Scholar 

  44. Thuraisingham, R. C., Nott, C. A., Dodd, S. M., & Yaqoob, M. M. (2000). Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney International, 57, 968–972.

    Article  Google Scholar 

  45. Anderson, M. M., Requena, J. R., Crowley, J. R., Thorpe, S. R., & Heinecke, J. W. (1999). The myeloperoxidase system of human phagocytes generates N-epsilon(carboxymethyl)lysine on proteins: A mechanism for producing advanced glycation end products at sites of inflammation. The Journal of Clinical Investigation, 104, 103–113.

    Article  PubMed  CAS  Google Scholar 

  46. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., Hofmann, M., Yan, S. F., Pischetsrieder, M., Stern, D., & Schmidt, A. M. (1999). N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. The Journal of Biological Chemistry, 274, 31740–3174.

    Article  PubMed  CAS  Google Scholar 

  47. Basta, G., Lazzerini, G., Massaro, M., Simoncini, T., Tanganelli, P., Fu, C., Kislinger, T., Stern, D. M., Schmidt, A. M., & De Caterina, R. (2002). Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: A mechanism for amplification of inflammatory responses. Circulation, 105, 816–822.

    Article  PubMed  CAS  Google Scholar 

  48. Gu, L., Hagiwara, S., Fan, Q., et al. (2005). Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes. Nephrology, Dialysis, Transplantation, 21, 299–313.

    Article  PubMed  CAS  Google Scholar 

  49. Figarola, JL., Shanmugam, N., Natarajan, R., & Rahbar, S. (2007). Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes, 56, 647–655.

    Article  PubMed  CAS  Google Scholar 

  50. Degenhardt, T. P., Alderson, N. L., Arrington, D. D., Beattie, R. J., Basgen, J. M., Steffes, M. W., Thorpe, S. R., & Baynes, J. W. (2002). Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney International, 61, 939–950.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Ms. Autumn Tate for her secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Rahbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahbar, S. Novel inhibitors of glycation and AGE formation. Cell Biochem Biophys 48, 147–157 (2007). https://doi.org/10.1007/s12013-007-0021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0021-x

Keywords

Navigation