Skip to main content
Log in

Characterization of Myelin Sheath FoF1-ATP Synthase and its Regulation by IF1

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

FoF1-ATP synthase is the nanomotor responsible for most of ATP synthesis in the cell. In physiological conditions, it carries out ATP synthesis thanks to a proton gradient generated by the respiratory chain in the inner mitochondrial membrane. We previously reported that isolated myelin vesicles (IMV) contain functional FoF1-ATP synthase and respiratory chain complexes and are able to conduct an aerobic metabolism, to support the axonal energy demand. In this study, by biochemical assay, Western Blot (WB) analysis and immunofluorescence microscopy, we characterized the IMV FoF1-ATP synthase. ATP synthase activity decreased in the presence of the specific inhibitors (olygomicin, DCCD, FCCP, valynomicin/nigericin) and respiratory chain inhibitors (antimycin A, KCN), suggesting a coupling of oxygen consumption and ATP synthesis. ATPase activity was inhibited in low pH conditions. WB and microscopy analyses of both IMV and optic nerves showed that the Inhibitor of F1 (IF1), a small protein that binds the F1 moiety in low pH when of oxygen supply is impaired, is expressed in myelin sheath. Data are discussed in terms of the role of IF1 in the prevention of the reversal of ATP synthase in myelin sheath during central nervous system ischemic events. Overall, data are consistent with an energetic role of myelin sheath, and may shed light on the relationship among demyelination and axonal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boyer, P. D. (2002). A research journey with ATP synthase. J Biol Chem, 277, 39045–39061.

    Article  CAS  PubMed  Google Scholar 

  2. von Ballmoos, C., Wiedenmann, A., & Dimroth, P. (2009). Essentials for ATP synthesis by F1F0 ATP synthases. Annual Review of Biochemistry, 78, 649–672.

    Article  Google Scholar 

  3. Capaldi, R. A., Aggeler, R., Turina, P., & Wilkens, S. (1994). Coupling between catalytic sites and the proton channel in F1F0-type ATPases. Trends in Biochemical Sciences, 19, 284–289.

    Article  CAS  PubMed  Google Scholar 

  4. Lebowitz, M. S., & Pedersen, P. L. (1996). Protein inhibitor of mitochondrial ATP synthase: relationship of inhibitor structure to pH-dependent regulation. Archives of Biochemistry and Biophysics, 330, 342–354.

    Article  CAS  PubMed  Google Scholar 

  5. Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M. R., Abramov, A. Y., et al. (2008). Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metabolism, 8, 13–25.

    Article  CAS  PubMed  Google Scholar 

  6. Cabezon, E., Butler, P. J., Runswick, M. J., & Walker, J. E. (2000). Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH. Journal of Biological Chemistry, 275, 25460–25464.

    Article  CAS  PubMed  Google Scholar 

  7. Gledhill, J. R., Montgomery, M. G., Leslie, A. G., & Walker, J. E. (2007). How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 104, 15671–15676.

    Article  CAS  PubMed  Google Scholar 

  8. Pullman, M. E., & Monroy, G. C. (1963). A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. Journal of Biological Chemistry, 238, 3762–3769.

    CAS  PubMed  Google Scholar 

  9. Klein, G., Satre, M., Dianoux, A. C., & Vignais, P. V. (1980). Radiolabeling of natural adenosine triphosphatase inhibitor with phenyl (14C)isothiocyanate and study of its interaction with mitochondrial adenosine triphosphatase. Localization of inhibitor binding sites and stoichiometry of binding. Biochemistry, 19, 2919–2925.

    Article  CAS  PubMed  Google Scholar 

  10. Krull, K. W., & Schuster, S. M. (1981). Kinetic studies of beef heart mitochondrial adenosine triphosphatase: interaction of the inhibitor protein and adenosine triphosphate analogues. Biochemistry, 20, 1592–1598.

    Article  CAS  PubMed  Google Scholar 

  11. Ames, A., I. I. I. (2000). CNS energy metabolism as related to function. Brain Research. Brain Research Reviews, 34, 42–68.

    Article  CAS  PubMed  Google Scholar 

  12. Veltri, K. L., Espiritu, M., & Singh, G. (1990). Distinct genomic copy number in mitochondria of different mammalian organs. Journal of Cellular Physiology, 143, 160–164.

    Article  CAS  PubMed  Google Scholar 

  13. Edgar, J. M., McCulloch, M. C., Thomson, C. E., & Griffiths, I. R. (2008). Distribution of mitochondria along small-diameter myelinated central nervous system axons. Journal of Neuroscience Research, 86, 2250–2257.

    Article  CAS  PubMed  Google Scholar 

  14. Ravera, S., Panfoli, I., Calzia, D., Aluigi, M. G., Bianchini, P., Diaspro, A., et al. (2009). Evidence for aerobic ATP synthesis in isolated myelin vesicles. International Journal of Biochemistry and Cell Biology, 41, 1581–1591.

    Article  CAS  PubMed  Google Scholar 

  15. Chi, S. L., & Pizzo, S. V. (2006). Cell surface F1Fo ATP synthase: a new paradigm? Annals of Medicine, 38, 429–438.

    Article  CAS  PubMed  Google Scholar 

  16. Panfoli, I., Calzia, D., Bianchini, P., Ravera, S., Diaspro, A., Candiano, G., et al. (2009). Evidence for aerobic metabolism in retinal rod outer segment disks. International Journal of Biochemistry and Cell Biology, 41, 2555–2565.

    Article  CAS  PubMed  Google Scholar 

  17. Haley, J. E., Samuels, F. G., & Ledeen, R. W. (1981). Study of myelin purity in relation to axonal contaminants. Cellular and Molecular Neurobiology, 1, 175–187.

    Article  CAS  PubMed  Google Scholar 

  18. Norton, W. T., & Poduslo, S. E. (1973). Myelination in rat brain: method of myelin isolation. Journal of Neurochemistry, 21, 749–757.

    Article  CAS  PubMed  Google Scholar 

  19. Ravera, S., Calzia, D., Panfoli, I., Pepe, I. M., & Morelli, A. (2007). Simultaneous detection of molecular weight and activity of adenylate kinases after electrophoretic separation. Electrophoresis, 28, 291–300.

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  21. Bucher, T., & Pfleiderer, G. (1955). Pyruvate kinase from muscle. In S. Colowick & N.O. Kaplan (Eds.), Methods in enzymology (pp. 435–440). Academic Press: New york.

    Chapter  Google Scholar 

  22. Taylor, C. M., Marta, C. B., Claycomb, R. J., Han, D. K., Rasband, M. N., Coetzee, T., et al. (2004). Proteomic mapping provides powerful insights into functional myelin biology. Proceedings of the National Academy of Sciences of the United States of America, 101, 4643–4648.

    Article  CAS  PubMed  Google Scholar 

  23. Vanrobaeys, F., Van Coster, R., Dhondt, G., Devreese, B., & Van Beeumen, J. (2005). Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Journal of Proteome Research, 4, 2283–2293.

    Article  CAS  PubMed  Google Scholar 

  24. Werner, H. B., Kuhlmann, K., Shen, S., Uecker, M., Schardt, A., Dimova, K., et al. (2007). Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. Journal of Neuroscience, 27, 7717–7730.

    Article  CAS  PubMed  Google Scholar 

  25. Ishii, A., Dutta, R., Wark, G. M., Hwang, S. I., Han, D. K., Trapp, B. D., et al. (2009). Human myelin proteome and comparative analysis with mouse myelin. Proceedings of the National Academy of Sciences of the United States of America, 106, 14605–14610.

    Article  CAS  PubMed  Google Scholar 

  26. Jahn, O., Tenzer, S., & Werner, H. B. (2009). Myelin proteomics: molecular anatomy of an insulating sheath. Molecular Neurobiology, 40, 55–72.

    Article  CAS  PubMed  Google Scholar 

  27. Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., et al. (2003). Possible role of cell surface H + -ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Molecular Cancer Research, 1, 931–939.

    CAS  PubMed  Google Scholar 

  28. Mangiullo, R., Gnoni, A., Leone, A., Gnoni, G. V., Papa, S., & Zanotti, F. (2008). Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes. Biochimica et Biophysica Acta, 1777, 1326–1335.

    Article  CAS  PubMed  Google Scholar 

  29. Imamura, H., Nhat, K. P., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y., et al. (2009). Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences of the United States of America, 106, 15651–15656.

    Article  CAS  PubMed  Google Scholar 

  30. Green, D. W., & Grover, G. J. (2000). The IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase. Biochimica et Biophysica Acta, 1458, 343–355.

    Article  CAS  PubMed  Google Scholar 

  31. Van Raaij, M. T., Oortgiesen, M., Timmerman, H. H., Dobbe, C. J., & Van Loveren, H. (1996). Time-dependent differential changes of immune function in rats exposed to chronic intermittent noise. Physiology & Behavior, 60, 1527–1533.

    Article  Google Scholar 

  32. Lippe, G., Sorgato, M. C., & Harris, D. A. (1988). The binding and release of the inhibitor protein are governed independently by ATP and membrane potential in ox-heart submitochondrial vesicles. Biochimica et Biophysica Acta, 933, 12–21.

    Article  CAS  PubMed  Google Scholar 

  33. Lippe, G., Sorgato, M. C., & Harris, D. A. (1988). Kinetics of the release of the mitochondrial inhibitor protein. Correlation with synthesis and hydrolysis of ATP. Biochimica et Biophysica Acta, 933, 1–11.

    Article  CAS  PubMed  Google Scholar 

  34. Panchenko, M. V., & Vinogradov, A. D. (1985). Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein. Active/inactive slow pH-dependent transitions of the inhibitor protein. FEBS Letters, 184, 226–230.

    Article  CAS  PubMed  Google Scholar 

  35. Crompton, M., Ellinger, H., & Costi, A. (1988). Inhibition by cyclosporin A of a Ca2 + -dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochemical Journal, 255, 357–360.

    CAS  PubMed  Google Scholar 

  36. Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–148.

    Article  CAS  PubMed  Google Scholar 

  37. Boyer, P. D. (1997). The ATP synthase–a splendid molecular machine. Annual Review of Biochemistry, 66, 717–749.

    Article  CAS  PubMed  Google Scholar 

  38. Beutner, G., Ruck, A., Riede, B., Welte, W., & Brdiczka, D. (1996). Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Letters, 396, 189–195.

    Article  CAS  PubMed  Google Scholar 

  39. Rouslin, W. (1986). Myocardial acidosis and the mitigation of tissue ATP depletion in ischemic cardiac muscle: the role of the mitochondrial ATPase. Advances in Experimental Medicine and Biology, 194, 355–373.

    CAS  PubMed  Google Scholar 

  40. Kann, O., & Kovacs, R. (2007). Mitochondria and neuronal activity. American journal of physiology. Cell physiology, 292, C641–C657.

    Article  CAS  PubMed  Google Scholar 

  41. Silver, I., & Erecinska, M. (1998). Oxygen and ion concentrations in normoxic and hypoxic brain cells. Advances in Experimental Medicine and Biology, 454, 7–16.

    CAS  PubMed  Google Scholar 

  42. Aliev, G., Palacios, H. H., Walrafen, B., Lipsitt, A. E., Obrenovich, M. E., & Morales, L. (2009). Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. International Journal of Biochemistry and Cell Biology, 41, 1989–2004.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt, C., Lepsverdize, E., Chi, S. L., Das, A. M., Pizzo, S. V., Dityatev, A., et al. (2008). Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Molecular Psychiatry, 13, 953–969.

    Article  CAS  PubMed  Google Scholar 

  44. Sergeant, N., Wattez, A., Galvan-valencia, M., Ghestem, A., David, J. P., Lemoine, J., et al. (2003). Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer’s disease. Neuroscience, 117, 293–303.

    Article  CAS  PubMed  Google Scholar 

  45. Trapp, B. D., & Nave, K. A. (2008). Multiple sclerosis: an immune or neurodegenerative disorder? Annual Review of Neuroscience, 31, 247–269.

    Article  CAS  PubMed  Google Scholar 

  46. Correale, J., Meli, F., & Ysrraelit, C. (2006). Neuronal injury in multiple sclerosis. Medicina (B Aires), 66, 472–485.

    CAS  Google Scholar 

  47. Mutsaers, S. E., & Carroll, W. M. (1998). Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathologica, 96, 139–143.

    Article  CAS  PubMed  Google Scholar 

  48. Dutta, R., & Trapp, B. D. (2006). Pathology and definition of multiple sclerosis. La Revue du praticien, 56, 1293–1298.

    PubMed  Google Scholar 

  49. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787–795.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant from the “Compagnia di San Paolo”- Neuroscience Program, for the research project entitled: “Energetic metabolism in myelinated axon: a new trophic role of myelin sheath”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Morelli.

Additional information

Silvia Ravera and Isabella Panfoli have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravera, S., Panfoli, I., Aluigi, M.G. et al. Characterization of Myelin Sheath FoF1-ATP Synthase and its Regulation by IF1 . Cell Biochem Biophys 59, 63–70 (2011). https://doi.org/10.1007/s12013-010-9112-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9112-1

Keywords

Navigation