Skip to main content
Log in

Activation of AMP-Activated Protein Kinase Contributes to Doxorubicin-Induced Cell Death and Apoptosis in Cultured Myocardial H9c2 Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Despite its potent antitumor effect, clinical use of Doxorubicin is limited because of serious side effects including myocardial toxicity. Understanding the cellular mechanism involved in this process in a better manner is beneficial for optimizing Doxorubicin treatment. In the current study, the authors focus on the AMP-activated protein kinase (AMPK) in the said process. In this study, the authors discovered for the first time that Doxorubicin induces AMPK activation in cultured rat embryonic ventricular myocardial H9c2 cells. Reactive oxygen species (ROS)-dependent LKB1 activation serves as the upstream signal for AMPK activation by Doxorubicin. Evidence in support of the activation of AMPK contributing to Doxorubicin-induced H9c2 cell death/apoptosis—probably by modulating multiple downstream signal targets, including regulating JNK, p53, and inhibiting mTORC1—is provided in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

ROS:

Reactive oxygen species

Dox:

Doxorubicin

JNK:

c-Jun N-terminal kinases

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

AICAR:

5′-Aminoimidazole-4-carboxamide ribonucleotide

TSC2:

Tuberous sclerosis protein 2

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

S6K1:

Ribosomal p70 S6 kinase

4E-BP1:

Eukaryotic initiation factor 4E (eIF4E)-binding protein 1

RNAi:

RNA interference

MnTBAP:

Mn(III)tetrakis (4-benzoic acid) porphyrin

NAC:

n-Acetyl-l-cysteine

FACS:

Fluorescence-activated cell sorting

References

  1. Tao, R., Karliner, J. S., Simonis, U., Zheng, J., Zhang, J., Honbo, N., et al. (2007). Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochemical and Biophysical Research Communications, 363, 257–262.

    Article  PubMed  CAS  Google Scholar 

  2. Shan, K., Lincoff, A. M., & Young, J. B. (1996). Anthracycline-induced cardiotoxicity. Annals of Internal Medicine, 125, 47–58.

    PubMed  CAS  Google Scholar 

  3. Li, K., Sung, R. Y., Huang, W. Z., Yang, M., Pong, N. H., Lee, S. M., et al. (2006). Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation, 113, 2211–2220.

    Article  PubMed  CAS  Google Scholar 

  4. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., et al. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 3329–3335.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, Y. M., Hwang, J. T., Kwak, D. W., Lee, Y. K., & Park, O. J. (2007). Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Annals of the New York Academy of Sciences, 1095, 496–503.

    Article  PubMed  CAS  Google Scholar 

  6. Kim do, Y., Park, M. W., Yuan, H. D., Lee, H. J., Kim, S. H., & Chung, S. H. (2009). Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells. Journal of Agriculture and Food Chemistry, 57, 10573–10578.

    Article  Google Scholar 

  7. Guo, D., Hildebrandt, I. J., Prins, R. M., Soto, H., Mazzotta, M. M., Dang, J., et al. (2009). The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 12932–12937.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, R. G., Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular Cell, 18, 283–293.

    Article  PubMed  CAS  Google Scholar 

  9. Okoshi, R., Ozaki, T., Yamamoto, H., Ando, K., Koida, N., Ono, S., et al. (2008). Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. Journal of Biological Chemistry, 283, 3979–3987.

    Article  PubMed  CAS  Google Scholar 

  10. Xiang, X., Saha, A. K., Wen, R., Ruderman, N. B., & Luo, Z. (2004). AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications, 321, 161–167.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Gil, M., Pesi, R., Perna, S., Allegrini, S., Giannecchini, M., Camici, M., et al. (2003). 5′-Aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience, 117, 811–820.

    Article  PubMed  CAS  Google Scholar 

  12. Pan, W., Yang, H., Cao, C., Song, X., Wallin, B., Kivlin, R., et al. (2008). AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncology Reports, 20, 1553–1559.

    PubMed  CAS  Google Scholar 

  13. Cao, C., Lu, S., Kivlin, R., Wallin, B., Card, E., Bagdasarian, A., et al. (2008). AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. Journal of Biological Chemistry, 283, 28897–28908.

    Article  PubMed  CAS  Google Scholar 

  14. Kefas, B. A., Cai, Y., Ling, Z., Heimberg, H., Hue, L., Pipeleers, D., et al. (2003). AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. Journal of Molecular Endocrinology, 30, 151–161.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi, T., Hirshman, M. F., Fujii, N., Habinowski, S. A., Witters, L. A., & Goodyear, L. J. (2000). Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes, 49, 527–531.

    Article  PubMed  CAS  Google Scholar 

  16. Terai, K., Hiramoto, Y., Masaki, M., Sugiyama, S., Kuroda, T., Hori, M., et al. (2005). AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Molecular and Cellular Biology, 25, 9554–9575.

    Article  PubMed  CAS  Google Scholar 

  17. Shin, S. M., & Kim, S. G. (2009). Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners. Molecular Pharmacology, 75, 242–253.

    Article  PubMed  CAS  Google Scholar 

  18. Lage, R., Dieguez, C., Vidal-Puig, A., & Lopez, M. (2008). AMPK: A metabolic gauge regulating whole-body energy homeostasis. Trends in Molecular Medicine, 14, 539–549.

    Article  PubMed  CAS  Google Scholar 

  19. Meisse, D., Van de Casteele, M., Beauloye, C., Hainault, I., Kefas, B. A., Rider, M. H., et al. (2002). Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Letters, 526, 38–42.

    Article  PubMed  CAS  Google Scholar 

  20. Cao, C., & Wan, Y. (2009). Parameters of protection against ultraviolet radiation-induced skin cell damage. Journal of Cellular Physiology, 220, 277–284.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, L., Xu, B., Liu, L., Luo, Y., Yin, J., Zhou, H., et al. (2010). Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Laboratory Investigation, 90, 762–773.

    Article  PubMed  CAS  Google Scholar 

  22. Lee, Y. M., Uhm, K. O., Lee, E. S., Kwon, J., Park, S. H., & Kim, H. S. (2008). AM251 suppresses the viability of HepG2 cells through the AMPK (AMP-activated protein kinase)-JNK (c-Jun N-terminal kinase)-ATF3 (activating transcription factor 3) pathway. Biochemical and Biophysical Research Communications, 370, 641–645.

    Article  PubMed  CAS  Google Scholar 

  23. Imamura, K., Ogura, T., Kishimoto, A., Kaminishi, M., & Esumi, H. (2001). Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochemical and Biophysical Research Communications, 287, 562–567.

    Article  PubMed  CAS  Google Scholar 

  24. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30, 214–226.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, M. B., Shen, W. X., Yang, Y., Wu, X. Y., Gu, J. H., & Lu, P. H. (2010). Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. Journal of Cellular Physiology [Epub ahead of print].

  26. Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 295, H1956–H1965.

    Article  PubMed  CAS  Google Scholar 

  27. Morgillo, F., Woo, J. K., Kim, E. S., Hong, W. K., & Lee, H. Y. (2006). Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Research, 66, 10100–10111.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, D. S., Chae, S. W., Kim, H. R., & Chae, H. J. (2009). CO and bilirubin inhibit doxorubicin-induced cardiac cell death. Immunopharmacology and Immunotoxicology, 31, 64–70.

    Article  PubMed  CAS  Google Scholar 

  29. den Hartog, G. J., Haenen, G. R., Boven, E., van der Vijgh, W. J., & Bast, A. (2004). Lecithinized copper, zinc-superoxide dismutase as a protector against doxorubicin-induced cardiotoxicity in mice. Toxicology and Applied Pharmacology, 194, 180–188.

    Article  Google Scholar 

  30. Doroshow, J. H. (1983). Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Research, 43, 460–472.

    PubMed  CAS  Google Scholar 

  31. Kim, D. S., Woo, E. R., Chae, S. W., Ha, K. C., Lee, G. H., Hong, S. T., et al. (2007). Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation. Life Science, 80, 314–323.

    Article  CAS  Google Scholar 

  32. Konorev, E. A., Kennedy, M. C., & Kalyanaraman, B. (1999). Cell-permeable superoxide dismutase and glutathione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: The role of reactive oxygen and nitrogen intermediates. Archives of Biochemistry and Biophysics, 368, 421–428.

    Article  PubMed  CAS  Google Scholar 

  33. Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., & St Clair, D. K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. Journal of Clinical Investigation, 98, 1253–1260.

    Article  PubMed  CAS  Google Scholar 

  34. Danz, E. D., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine, 46, 1589–1597.

    Article  PubMed  Google Scholar 

  35. Zhang, J. F., Liu, J. J., Lu, M. Q., Cai, C. J., Yang, Y., Li, H., et al. (2007). Rapamycin inhibits cell growth by induction of apoptosis on hepatocellular carcinoma cells in vitro. Transplant Immunology, 17, 162–168.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, W. H., Lee, J. W., Suh, Y. H., Lee, H. J., Lee, S. H., Oh, Y. K., et al. (2007). AICAR potentiates ROS production induced by chronic high glucose: Roles of AMPK in pancreatic beta-cell apoptosis. Cellular Signalling, 19, 791–805.

    Article  PubMed  CAS  Google Scholar 

  37. Luo, Z., Saha, A. K., Xiang, X., & Ruderman, N. B. (2005). AMPK, the metabolic syndrome and cancer. Trends in Pharmacological Sciences, 26, 69–76.

    Article  PubMed  CAS  Google Scholar 

  38. Panaretakis, T., Laane, E., Pokrovskaja, K., Bjorklund, A. C., Moustakas, A., Zhivotovsky, B., et al. (2005). Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Molecular Biology of the Cell, 16, 3821–3831.

    Article  PubMed  CAS  Google Scholar 

  39. Brantley-Finley, C., Lyle, C. S., Du, L., Goodwin, M. E., Hall, T., Szwedo, D., et al. (2003). The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochemical Pharmacology, 66, 459–469.

    Article  PubMed  CAS  Google Scholar 

  40. Gleason, C. E., Lu, D., Witters, L. A., Newgard, C. B., & Birnbaum, M. J. (2007). The role of AMPK and mTOR in nutrient sensing in pancreatic beta-cells. Journal of Biological Chemistry, 282, 10341–10351.

    Article  PubMed  CAS  Google Scholar 

  41. Chiang, P. C., Lin, S. C., Pan, S. L., Kuo, C. H., Tsai, I. L., Kuo, M. T., et al. (2010). Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: A crucial role of AMPK and mTOR pathways. Biochemical Pharmacology, 79, 162–171.

    Article  PubMed  CAS  Google Scholar 

  42. Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577–590.

    Article  PubMed  CAS  Google Scholar 

  43. Shizukuda, Y., Matoba, S., Mian, O. Y., Nguyen, T., & Hwang, P. M. (2005). Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Molecular and Cellular Biochemistry, 273, 25–32.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu, W., Soonpaa, M. H., Chen, H., Shen, W., Payne, R. M., Liechty, E. A., et al. (2009). Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation, 119, 99–106.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, Y., Hu, Y., Gu, H. Y., Lu, N., Liu, W., Qi, Q., et al. (2008). Oroxylin A induces G2/M phase cell-cycle arrest via inhibiting Cdk7-mediated expression of Cdc2/p34 in human gastric carcinoma BGC-823 cells. Journal of Pharmacy and Pharmacology, 60, 1459–1463.

    PubMed  CAS  Google Scholar 

  46. Rattan, R., Giri, S., Singh, A. K., & Singh, I. (2005). 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. Journal of Biological Chemistry, 280, 39582–39593.

    Article  PubMed  CAS  Google Scholar 

  47. Vasquez-Vivar, J., Martasek, P., Hogg, N., Masters, B. S., Pritchard, K. A., Jr., & Kalyanaraman, B. (1997). Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry, 36, 11293–11297.

    Article  PubMed  CAS  Google Scholar 

  48. Kotamraju, S., Chitambar, C. R., Kalivendi, S. V., Joseph, J., & Kalyanaraman, B. (2002). Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: Role of oxidant-induced iron signaling in apoptosis. Journal of Biological Chemistry, 277, 17179–17187.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao, Y., McLaughlin, D., Robinson, E., Harvey, A. P., Hookham, M. B., Shah, A. M., et al. (2010). Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Research, 70, 9287–9297.

    Article  PubMed  CAS  Google Scholar 

  50. Kharbanda, S., Pandey, P., Ren, R., Mayer, B., Zon, L., & Kufe, D. (1995). c-Abl activation regulates induction of the SEK1/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine. Journal of Biological Chemistry, 270, 30278–30281.

    Article  PubMed  CAS  Google Scholar 

  51. Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., et al. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature, 380, 75–79.

    Article  PubMed  CAS  Google Scholar 

  52. Reyland, M. E., Anderson, S. M., Matassa, A. A., Barzen, K. A., & Quissell, D. O. (1999). Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. Journal of Biological Chemistry, 274, 19115–19123.

    Article  PubMed  CAS  Google Scholar 

  53. Yamamoto, K., Ichijo, H., & Korsmeyer, S. J. (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Molecular and Cellular Biology, 19, 8469–8478.

    PubMed  CAS  Google Scholar 

  54. Lei, K., & Davis, R. J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 100, 2432–2437.

    Article  PubMed  CAS  Google Scholar 

  55. Gupta, S., Campbell, D., Derijard, B., & Davis, R. J. (1995). Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 267, 389–393.

    Article  PubMed  CAS  Google Scholar 

  56. Li, Y., Corradetti, M. N., Inoki, K., & Guan, K. L. (2004). TSC2: Filling the GAP in the mTOR signaling pathway. Trends in Biochemical Sciences, 29, 32–38.

    Article  PubMed  Google Scholar 

  57. Inoki, K., Li, Y., Xu, T., & Guan, K. L. (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development, 17, 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  58. Bode, A. M., & Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nature Reviews Cancer, 4, 793–805.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010160).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Hua Lu.

Additional information

Min-Bin Chen and Xiao-Yang Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

A

Effects of different concentration of target siRNA on AMPKα expression in H9c2 cells. H9c2 cells were either left un-transfected (non-transfected control), treated with transfection reagents or transfected with scramble siRNA or different concentration of AMPKα siRNA for 48 h using transfection method discussed above. AMPKα expression was detected by western blot; β-actin was detected as equal loading. AMPKα expression level was quantified after normalized toβ-actin. B, C Effects of scramble siRNA transfection on Doxorubicin-induced signal events in H9c2 cells. H9c2 cells were either left un-transfected (non-transfected control) or transfected with scramble siRNA (150 nM) for 48 h, followed by Doxorubicin (0.3 μg/ml) for indicated time points, LKB1, AMPK and JNK phosphorylation were detected by western blot (B). S6K phosphorylation, p53 expression and phosphorylation, Caspase 3 cleavage were also detected by western blot as demonstrated in (C) (EPS 2617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MB., Wu, XY., Gu, JH. et al. Activation of AMP-Activated Protein Kinase Contributes to Doxorubicin-Induced Cell Death and Apoptosis in Cultured Myocardial H9c2 Cells. Cell Biochem Biophys 60, 311–322 (2011). https://doi.org/10.1007/s12013-011-9153-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9153-0

Keywords

Navigation