Skip to main content

Advertisement

Log in

Effect of Sulforaphane on Growth Inhibition in Human Brain Malignant Glioma GBM 8401 Cells by Means of Mitochondrial- and MEK/ERK-Mediated Apoptosis Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In recent studies, sulforaphane (SFN) has been seen to demonstrate antioxidant and anti-tumor activities as well as potent chemopreventive action against cancer. The present study investigates the anti-proliferation (using MTT assay, SFN demonstrated cytotoxic activity against GBM 8401 cell with IC50 values at 35.52 μM) and induced apoptosis of SFN 24-h treatment in the cells of human brain malignant glioma GBM 8401 cells. We studied the MMP, caspase, MEK/ERK activation, and NF-κB transcription factor activity. Our results indicate that SFN inhibits cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects increased in proportion to the dosage of SFN, and apoptosis was induced via mitochondria- and caspase-dependent pathways. Daily s.c. injections of SFN for 3 weeks in severe combined immunodeficient mice (SCID) with GBM8401 s.c. tumors resulted in a decrease in mean tumor weight of 69–75 % compared with vehicle-treated controls. Our findings suggest that, in addition to the known effects on cancer prevention, SFN may provide antitumor activity in established malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mukherjee, S., Bhattacharya, R. K., & Roy, M. (2009). Targeting protein kinase C (PKC) and telomerase by phenethyl isothiocyanate (PEITC) sensitizes PC-3 cells towards chemotherapeutic drug-induced apoptosis. Journal of Environmental Pathology, Toxicology and Oncology, 28(4), 269–282.

    PubMed  CAS  Google Scholar 

  2. Smerák, P., Polívková, Z., Stetina, R., et al. (2009). Antimutagenic effect of phenethyl isothiocyanate. Central European Journal of Public Health, 17(2), 86–92.

    PubMed  Google Scholar 

  3. Stan, S. D., Singh, S. V., & Brand, R. E. (2010). Chemoprevention strategies for pancreatic cancer. Nature Reviews Gastroenterology & Hepatology, 7(6), 347–356.

    CAS  Google Scholar 

  4. Matsuda, T., Maruyama, T., Iizuka, H., et al. (2010). Phthalate esters reveal skin-sensitizing activity of phenethyl isothiocyanate in mice. Food and Chemical Toxicology, 48(6), 1704–1708.

    Article  PubMed  CAS  Google Scholar 

  5. Herr, I., & Büchler, M. W. (2010). Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treatment Reviews, 36(5), 377–383.

    Article  PubMed  CAS  Google Scholar 

  6. Maeda, T., Miyazono, Y., Ito, K., et al. (2010). Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemotherapy and Pharmacology, 65(6), 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  7. Miyoshi, N., Watanabe, E., Osawa, T., et al. (2008). ATP depletion alters the mode of cell death induced by benzyl isothiocyanate. Biochimica et Biophysica Acta, 1782(10), 566–573.

    PubMed  CAS  Google Scholar 

  8. Hasegawa, K., Miwa, S., Tsutsumiuchi, K., et al. (2010). Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor. PLoS ONE, 5(2), e9267.

    Article  PubMed  Google Scholar 

  9. Mishra, P. K., Panwar, H., Bhargava, A., et al. (2008). Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes. Journal of Biochemical and Molecular Toxicology, 22(6), 429–440.

    Article  PubMed  CAS  Google Scholar 

  10. Adsule, S., Banerjee, S., Ahmed, F., et al. (2010). Hybrid anticancer agents: Isothiocyanate-progesterone conjugates as chemotherapeutic agents and insights into their cytotoxicities. Bioorganic & Medicinal Chemistry Letters, 20(3), 1247–1251.

    Article  CAS  Google Scholar 

  11. Higdon, J. V., Delage, B., Williams, D. E., et al. (2007). Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacological Research, 55(3), 224–236.

    Article  PubMed  CAS  Google Scholar 

  12. Li, M., Wang, Q., Lin, W., & Wang, B. (2009). Regulation of ovarian cancer cell adhesion and invasion by chloride channels. International Journal of Gynecological Cancer, 19(4), 526–530.

    Article  PubMed  Google Scholar 

  13. D’Agostini, F., Mastracci, L., Izzotti, A., et al. (2009). Modulation by phenethyl isothiocyanate and budesonide of molecular and histopathologic alterations induced by environmental cigarette smoke in mice. Cancer Prevention Research (Philadelphia), 2(6), 546–556.

    Article  Google Scholar 

  14. Kim, M. G., & Lee, H. S. (2009). Growth-inhibiting activities of phenethyl isothiocyanate and its derivatives against intestinal bacteria. Journal of Food Science, 74(8), M467–M471.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi, S., Nakamura, E., Kubo, Y., et al. (2008). Impairment by allyl isothiocyanate of gastric epithelial wound repair through inhibition of ion transporters. Journal of Physiology and Pharmacology, 59(4), 691–706.

    PubMed  CAS  Google Scholar 

  16. Traka, M. H., Spinks, C. A., Doleman, J. F., et al. (2010). The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Molecular Cancer, 13, 189.

    Article  Google Scholar 

  17. Jiang, H., Shang, X., Wu, H., et al. (2010). Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochemical Research, 35(1), 152–161.

    Article  PubMed  CAS  Google Scholar 

  18. Jakubíková, J., Sedlák, J., Mithen, R., et al. (2005). Role of PI3 K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochemical Pharmacology, 69(11), 1543–1552.

    Article  PubMed  Google Scholar 

  19. Shan, Y., Wu, K., Wang, W., et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. International Journal of Oncology, 34(4), 1129–1134.

    PubMed  CAS  Google Scholar 

  20. Choi, S., Lew, K. L., Xiao, H., et al. (2007). d,l-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis, 28(1), 151–162.

    Article  PubMed  CAS  Google Scholar 

  21. Mao, L., Wang, H. D., Wang, X. L., et al. (2010). Sulforaphane attenuates matrix metalloproteinase-9 expression following spinal cord injury in mice. Annals of Clinical and Laboratory Science, 40(4), 354–360.

    PubMed  CAS  Google Scholar 

  22. Zhu, M., Zhang, Y., Cooper, S., et al. (2004). Phase II enzyme inducer, sulforaphane, inhibits UVB-induced AP-1 activation in human keratinocytes by a novel mechanism. Molecular Carcinogenesis, 41(3), 179–186.

    Article  PubMed  CAS  Google Scholar 

  23. Huang, T. Y., Tsai, T. H., Hsu, C. W., et al. (2010). Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells. Journal of Agriculture and Food Chemistry, 58(19), 10639–10645.

    Article  CAS  Google Scholar 

  24. Moquin, D. L., & Chan, F. K. (2010). The molecular regulation of programmed necrotic cell injury. Trends in Biochemical Sciences, 35(8), 434–441.

    Article  PubMed  CAS  Google Scholar 

  25. Shih, Y. W., Wu, P. F., Lee, Y. C., et al. (2009). Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: Possible mediation by blocking the ERK signaling pathway. Journal of Agriculture and Food Chemistry, 57(9), 3490–3499.

    Article  CAS  Google Scholar 

  26. Karsy, M., Albert, L., Tobias, M. E., et al. (2010). All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer Research, 30(12), 4915–4920.

    PubMed  CAS  Google Scholar 

  27. Chang, H. F., Huang, W. T., Chen, H. J., et al. (2010). Apoptotic effects of γ-mangostin from the fruit hull of Garcinia mangostana on human malignant glioma cells. Molecules, 15(12), 8953–8966.

    Article  PubMed  CAS  Google Scholar 

  28. Juan, H. F., Chen, J. H., Hsu, W. T., et al. (2004). Identification of tumor-associated plasma biomarkers using proteomic techniques: from mouse to human. Proteomics, 4(9), 2766–2775.

    Article  PubMed  CAS  Google Scholar 

  29. Lim, S. K., Llaguno, S. R., McKay, R. M., et al. (2011). Glioblastoma multiforme: A perspective on recent findings in human cancer and mouse models. BMB Reports, 44(3), 158–164.

    Article  PubMed  CAS  Google Scholar 

  30. Khor, T. O., Keum, Y. S., Lin, W., et al. (2006). Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Research, 66(2), 613–621.

    Article  PubMed  CAS  Google Scholar 

  31. Park, C., Moon, D. O., Choi, I. W., et al. (2007). Curcumin induces apoptosis and inhibits prostaglandin E2 production in synovial fibroblasts of patients with rheumatoid arthritis. International Journal of Molecular Medicine, 20(3), 365–372.

    PubMed  CAS  Google Scholar 

  32. Abdi, A., Sadraie, H., Dargahi, L., Khalaj, L., et al. (2011). Apoptosis inhibition can be threatening in Aβ-induced neuroinflammation, through promoting cell proliferation. Neurochemical Research, 36(1), 39–48.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao, Y., Sui, X., & Ren, H. (2010). From procaspase-8 to caspase-8: Revisiting structural functions of caspase-8. Journal of Cellular Physiology, 225(2), 316–320.

    Article  PubMed  CAS  Google Scholar 

  34. Kuttan, G., Kumar, K. B., Guruvayoorappan, C., et al. (2007). Antitumor, anti-invasion, and antimetastatic effects of curcumin. Advances in Experimental Medicine and Biology, 595, 173–184.

    Article  PubMed  Google Scholar 

  35. Kunnumakkara, A. B., Guha, S., Krishnan, S., et al. (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Research, 67(8), 3853–3861.

    Article  PubMed  CAS  Google Scholar 

  36. Yoon, H., & Liu, R. H. (2007). Effect of selected phytochemicals and apple extracts on NF-kappaB activation in human breast cancer MCF-7 cells. Journal of Agriculture and Food Chemistry, 55(8), 3167–3173.

    Article  CAS  Google Scholar 

  37. Brunelli, D., Tavecchio, M., Falcioni, C., et al. (2010). The isothiocyanate produced from glucomoringin inhibits NF-κB and reduces myeloma growth in nude mice in vivo. Biochemical Pharmacology, 79(8), 1141–1148.

    Article  PubMed  CAS  Google Scholar 

  38. Fimognari, C., & Hrelia, P. (2007). Sulforaphane as a promising molecule for fighting cancer. Mutation Research, 635(2–3), 90–104.

    PubMed  CAS  Google Scholar 

  39. Roy, S. K., Srivastava, R. K., & Shankar, S. (2010). Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. Journal of Molecular Biology, 5, 10.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Tainan Sin-Lau Hospital (99-01 and 100-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzuu-Yuan Huang or Yi-Chiang Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, TY., Chang, WC., Wang, MY. et al. Effect of Sulforaphane on Growth Inhibition in Human Brain Malignant Glioma GBM 8401 Cells by Means of Mitochondrial- and MEK/ERK-Mediated Apoptosis Pathway. Cell Biochem Biophys 63, 247–259 (2012). https://doi.org/10.1007/s12013-012-9360-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9360-3

Keywords

Navigation