Skip to main content

Advertisement

Log in

Effect of HSP70 and 90 in Modulation of JNK, ERK Expression in Preeclamptic Placental Endothelial Cell

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Preeclampsia is a disease of worldwide significance with increasing maternal mortality rate of 20–80 %. Though apoptosis is a normal constituent during pregnancy, there seems to be an altered balance between proliferation and apoptosis of endothelial cell in preeclampsia leading to a placental dysregulation resulting in premature delivery. Molecular chaperones like HSP70 and 90 play a significant role in control of preeclamptic progression and protect the developing fetus. This is governed by alterations in expression of HSF1, HIF1α a nuclear transcription factor and signaling molecule like ERK, JNK1/2, and Bcl-2. Endothelial cell from normotensive and preeclamptic placenta were analyzed for variation in viability and expression of signaling molecules. A significant decrease in viability of endothelial cell (p < 0.05) was noted in preeclamptic samples when compared to normotensive samples. The results indicate that there was an increase in, HSP70 and 90 (p < 0.01), HSF1 (p < 0.01), HIF1α (p < 0.05), ERK (p < 0.05), JNK1/2 (p < 0.05), and Bcl-2 (p < 0.05). Though there is a significant change in the viability of endothelial cell, the live fetal delivery is not predominantly affected during preeclampsia. The interplay between these signaling molecules which alter the apoptotic pathway to sustain endothelial cell viability is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HSP:

Heat shock protein

HSF:

Heat shock factor

HIF:

Hypoxia inducible factor

ERK:

Extracellular signal regulating kinase

JNK:

c-jun N-terminal kinase

Bcl-2:

B cell CLL/lymphoma like protein-2

Elk:

ETS (E-twenty-six)-like kinase

TCF:

Ternary complex factor

MAPK:

Mitogen activate protein kinase

XO:

Xanthine oxidase

BMI:

Body mass index

EDTA:

Ethylene diamine tetra acetic acid

CD31:

Cluster of differentiation 31

PBS:

Phosphate-buffered saline

TEM:

Transmission electron microscopy

ELISA:

Enzyme linked immunosorbent assay

PVDF:

Polyvinylidene di-flouride

SDS:

Sodium dodecyl sulfate

BCIP–NBT:

Bromo chloro indolyl phenol–nitro blue tetrazolium

TBS:

Tris-buffered saline

DAB:

Diaminobenzedine

ANOVA:

Analysis of variance

References

  1. Chaddha, V., Viero, S., Huppertz, B., & Kingdom, J. (2004). Developmental biology of the placenta and the origins of placental insufficiency. Seminars in Fetal and Neonatal Medicine, 9, 357–369.

    Article  PubMed  Google Scholar 

  2. Meis, P., Goldenberg, R., & Mercer, B. (1998). The preterm prediction study: Risk factors for indicated preterm births. Maternal-Fetal Medicine Units Network of the National Institute of Child Health and Human Development. American Journal of Obstetrics and Gynecology, 179, 562–567.

    Article  Google Scholar 

  3. Roberts, J. M., Taylor, R. N., Musci, T. J., Rodgers, G. M., Hubel, C. A., & McLaughlin, M. K. (1990). Preeclampsia: An endothelial cell disorder. American Journal of Obstetrics and Gynecology, 163, 1365–1366.

    Google Scholar 

  4. Roberts, J. M. (1998). Endothelial dysfunction in preeclampsia. Seminars in Reproductive Endocrinology, 16, 5–15.

    Article  PubMed  CAS  Google Scholar 

  5. Redman, C. W. (1991). Current topic: Preeclampsia and the placenta. Placenta, 12, 301–308.

    Article  PubMed  CAS  Google Scholar 

  6. Redman, C. W. G., & Sargent, I. L. (2000). Placental debris, oxidative stress and preeclampsia. Placenta, 21(7), 597–602.

    Article  PubMed  CAS  Google Scholar 

  7. Ilhan, N., Ilhan, N., & Simsek, M. (2002). The changes of trace elements, malondialdehyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia. Clinical Biochemistry, 35(5), 393–397.

    Article  PubMed  CAS  Google Scholar 

  8. Padmini, E., Usha Rani, M., & Lavanya, S. (2008). Effect of mint and tea infusions on the antioxidant capacity of preeclamptic endothelial cells. Asian Journal of Microbiology, Biotechnology and Environmental Science, 10(4), 903–909.

    Google Scholar 

  9. Padmini, E., Lavanya, S., & Uthra, V. (2009). Preeclamptic placental stress and mitochondrial HSP70 over expression. Clinical Chemistry and Laboratory Medicine, 47(9), 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  10. Cindrova-Davies, T., Spasic-Boskovic, O., Jauniaux, E., Charnock-Jones, D. S., & Burton, G. J. (2007). Nuclear factor-κB, p38, and stress-activated protein kinase, mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress. American Journal of Pathology, 170(5), 1511–1520.

    Article  PubMed  CAS  Google Scholar 

  11. Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.

    PubMed  CAS  Google Scholar 

  12. Salceda, S., & Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin–proteasome system under normoxic conditions: Its stabilization by hypoxia depends on redox-induced changes. Journal of Biological Chemistry, 272, 22642–22647.

    Article  PubMed  CAS  Google Scholar 

  13. Bukau, B., & Horwich, A. L. (1998). The HSP70 and HSP60 chaperone machines. Cell, 92(3), 351–366.

    Article  PubMed  CAS  Google Scholar 

  14. Beere, H. M., Wolf, B. B., Cain, K., Mosser, D. D., Mahboubi, A., Kuwana, T., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.

    Article  PubMed  CAS  Google Scholar 

  15. Picard, D., Khursheed, B., Garabedian, M. J., Fortin, M. G., Lindquist, S., & Yamamoto, K. R. (1990). Reduced levels of HSP90 compromise steroid receptor action in vivo. Nature, 348, 166–168.

    Article  PubMed  CAS  Google Scholar 

  16. Xu, Y., & Lindquist, S. (1993). Heat-shock protein HSP90 governs the activity of pp 60v-src kinase. Proceedings of the National Academy of Sciences of the United States of America, 90, 7074–7078.

    Article  PubMed  CAS  Google Scholar 

  17. Cs, Soti, Nagy, E., Giricz, Z., Vigh, L., Csermely, P., & Ferdinandy, P. (2005). Heat shock proteins as emerging therapeutic targets. British Journal of Pharmacology, 146, 769–780.

    Article  Google Scholar 

  18. Wu, C. (1995). Heat shock transcription factors: Structure and regulation. Annual Review of Cell and Developmental Biology, 11, 441–469.

    Article  PubMed  CAS  Google Scholar 

  19. Jaattela, M. (1999). Escaping cell death: Survival proteins in cancer. Experimental Cell Research, 248, 30–43.

    Article  PubMed  CAS  Google Scholar 

  20. Koga, F., Xu, W., Karpova, T. S., McNally, J. G., Baro, R., & Neckers, L. (2006). HSP90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proceedings of the National Academy of Sciences of the United States of America, 103, 11318–11322.

    Article  PubMed  CAS  Google Scholar 

  21. Dou, F., Yuan, L. D., & Zhu, J. J. (2005). Heat shock protein 90 indirectly regulates ERK activity by affecting Raf protein metabolism. Acta Biochimica et Biophysica Sinica, 37(7), 501–505.

    Article  PubMed  CAS  Google Scholar 

  22. Davie, J. R., & Spencer, V. A. (2001). Signal transduction pathways and the modification of chromatin structure. Progress in Nucleic Acid Research and Molecular Biology, 65, 299–340.

    PubMed  CAS  Google Scholar 

  23. Demir, O., & Kurnaz, I. A. (2008). Wildtype Elk-1, but not a SUMOylation mutant, represses egr-1 expression in SH-SY5Y neuroblastomas. Neuroscience Letters, 437(1), 20–24.

    Article  PubMed  CAS  Google Scholar 

  24. Hibi, M. A., Lin, T., Smeal, A., Minden, A., & Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes & Development, 7, 2135–2148.

    Article  CAS  Google Scholar 

  25. Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103, 239–252.

    Article  PubMed  CAS  Google Scholar 

  26. Weston, R. C., & Davis, R. J. (2002). The JNK signal transduction pathway. Current Opinion in Genetics & Development, 12, 14–21.

    Article  CAS  Google Scholar 

  27. Brown, M. A., Lindheimer, M. D., de Swiet, M., Van Assche, A., & Moutquin, J. M. (2001). The classification and diagnosis of the hypertensive disorders if pregnancy: Statement form the International Society for the study of hypertension in Pregnancy (ISSHP). Hypertension Pregnancy, 20, 9–14.

    Google Scholar 

  28. Padmini, E., & Lavanya, S. (2011). HSP70 mediated control of endothelial cell apoptosis during pre-eclampsia. European Journal of Obstetrics & Gynecology Reproductive Biology, 156, 158–164.

    Article  CAS  Google Scholar 

  29. Strober, W. (2001). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, Appendix 3, Appendix 3B.

  30. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510–5514.

    Article  PubMed  CAS  Google Scholar 

  32. Baird, N. A., Turnbull, D. W., & Johnson, E. A. (2006). Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. Journal of Biological Chemistry, 281(50), 38675–38681.

    Article  PubMed  CAS  Google Scholar 

  33. Pelham, H. R. (1982). A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell, 30, 517–528.

    Article  PubMed  CAS  Google Scholar 

  34. Orosz, A., Wisniewski, J., & Wu, C. (1996). Regulation of Drosophila heat shock factor trimerization: Global sequence requirements and independence of nuclear localization. Molecular and Cellular Biology, 16, 7018–7030.

    PubMed  CAS  Google Scholar 

  35. Yao, Y., Li, W., Wu, J., et al. (2003). Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12759–12764.

    Article  PubMed  CAS  Google Scholar 

  36. Chen, R. H., Sarnecki, C., & Blenis, J. (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Molecular and Cellular Biology, 12, 915–927.

    PubMed  CAS  Google Scholar 

  37. Gille, H., Strahl, T., & Shaw, P. E. (1995). Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Current Biology, 5, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  38. Pearson, G. F., Robinson, T., Beers Gibson, B., Xu, M., Karandikar, K., & CobbMH, Berman. (2001). Mitogen-activated protein (map) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153–183.

    Article  PubMed  CAS  Google Scholar 

  39. Pages, G., Lenormand, P., L’Allemain, G., Chambard, J. C., Meloche, S., & Pouyssegur, J. (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proceedings of the National Academy of Sciences of the United States of America, 90, 8319–8323.

    Article  PubMed  CAS  Google Scholar 

  40. Buchkovich, K. J., & Ziff, E. B. (1994). Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells. Molecular Biology of the Cell, 5, 1225–1241.

    PubMed  CAS  Google Scholar 

  41. Cowan, K. J., & Storey, K. B. (2003). Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. Journal of Experimental Biology, 206, 1107–1115.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, J., & Lin, A. (2005). Role of JNK in apoptosis: A double edged sword. Cell Research, 15(1), 36–42.

    Article  PubMed  Google Scholar 

  43. Sreedhar, A. S., & Csermely, P. (2004). Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy. A comprehensive review. Pharmacology Therapy, 101, 227–257.

    Article  CAS  Google Scholar 

  44. Hochedlinger, K., Wagner, E. F., & Sabapathy, K. (2002). Differential expression of JNK1 and JNK2 on signal specific induction of apoptosis. Oncogene, 21, 2441–2445.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang, D., Li, J., Costa, M., Gao, J., & Huang, C. (2010). JNK1 mediates degradation of HIF-1α by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. Cancer Research, 70, 813–823.

    Article  PubMed  CAS  Google Scholar 

  46. Maundrell, K., Antonsson, B., Magnenat, E., et al. (1997). Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. Journal of Biological Chemistry, 272, 25238–25242.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project funded by National Tea Research Foundation, Tea Board of India is acknowledged. Project referral number—NTRF: 115/07. V. Uthra and S. Lavanya thank Indian council for Medical Research for providing financial assistance in the form of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Padmini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmini, E., Uthra, V. & Lavanya, S. Effect of HSP70 and 90 in Modulation of JNK, ERK Expression in Preeclamptic Placental Endothelial Cell. Cell Biochem Biophys 64, 187–195 (2012). https://doi.org/10.1007/s12013-012-9371-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9371-0

Keywords

Navigation