Skip to main content
Log in

Secreted Products of Macrophages Exposed to Calcium Oxalate Crystals Induce Epithelial Mesenchymal Transition of Renal Tubular Cells via RhoA-Dependent TGF-β1 Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Kidney stone disease is associated with renal fibrosis by the unclear mechanisms. We hypothesized that calcium oxalate (CaOx), a major crystalline component of kidney stones, could induce secretion of fibrotic factors from macrophages leading to “epithelial mesenchymal transition/transdifferentiation” (EMT) of renal tubular cells. Western blot analysis revealed an increased level of vimentin (mesenchymal marker) but decreased levels of E-cadherin and cytokeratin (epithelial markers) in MDCK cells treated with “secreted products from CaOx-exposed macrophages” (CaOx-M-Sup). Immunofluorescence study confirmed the increased level of vimentin and decreased level of cytokeratin, and also revealed the increased level of fibronectin (another mesenchymal marker). The data also showed decreased levels and disorganization of F-actin (cytoskeletal marker) and zonula occludens-1 (ZO-1) (tight junction marker) induced by CaOx-M-Sup. ELISA demonstrated the increased level of transforming growth factor-β1 (TGF-β1), the well-defined EMT inducer, in CaOx-M-Sup. Downstream signaling of TGF-β1 was involved as demonstrated by the decreased level of RhoA. Interestingly, pretreatment with a proteasome inhibitor (MG132) could restore RhoA to its basal level, most likely through ubiquitin-proteasome pathway (UPP). Moreover, MG132 successfully sustained cytoskeletal assembly and tight junction, and could prevent the cells from EMT. Altogether, these data demonstrate for the first time that CaOx-M-Sup could induce EMT in renal tubular cells by TGF-β1 signaling cascade via RhoA and UPP. This may be, at least in part, the underlying mechanism for renal fibrosis in kidney stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saucier, N. A., Sinha, M. K., Liang, K. V., Krambeck, A. E., Weaver, A. L., Bergstralh, E. J., et al. (2010). Risk factors for CKD in persons with kidney stones: A case–control study in Olmsted County, Minnesota. American Journal of Kidney Diseases, 55, 61–68.

    Article  PubMed  Google Scholar 

  2. Iseki, K. (2008). Chronic kidney disease in Japan. Internal Medicine, 47, 681–689.

    Article  PubMed  Google Scholar 

  3. Iwano, M. (2010). EMT and TGF-beta in renal fibrosis. Frontiers in Bioscience (Scholar edition), 2, 229–238.

    Article  Google Scholar 

  4. Rastaldi, M. P., Ferrario, F., Giardino, L., Dell’Antonio, G., Grillo, C., Grillo, P., et al. (2002). Epithelial–mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney International, 62, 137–146.

    Article  PubMed  Google Scholar 

  5. Zeisberg, M., & Neilson, E. G. (2009). Biomarkers for epithelial–mesenchymal transitions. Journal of Clinical Investigation, 119, 1429–1437.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology, 15, 1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19, 156–172.

    Article  PubMed  CAS  Google Scholar 

  8. Iwano, M., Plieth, D., Danoff, T. M., Xue, C., Okada, H., & Neilson, E. G. (2002). Evidence that fibroblasts derive from epithelium during tissue fibrosis. Journal of Clinical Investigation, 110, 341–350.

    PubMed  CAS  Google Scholar 

  9. Garcia-Sanchez, O., Lopez-Hernandez, F. J., & Lopez-Novoa, J. M. (2010). An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease. Kidney International, 77, 950–955.

    Article  PubMed  CAS  Google Scholar 

  10. Ivanova, L., Butt, M. J., & Matsell, D. G. (2008). Mesenchymal transition in kidney collecting duct epithelial cells. American Journal of Physiology-Renal Physiology, 294, F1238–F1248.

    Article  PubMed  CAS  Google Scholar 

  11. de Water, R., Noordermeer, C., van der Kwast, T. H., Nizze, H., Boeve, E. R., Kok, D. J., et al. (1999). Calcium oxalate nephrolithiasis: Effect of renal crystal deposition on the cellular composition of the renal interstitium. American Journal of Kidney Diseases, 33, 761–771.

    Article  PubMed  Google Scholar 

  12. de Water, R., Noordermeer, C., Houtsmuller, A. B., Nigg, A. L., Stijnen, T., Schroder, F. H., et al. (2000). Role of macrophages in nephrolithiasis in rats: An analysis of the renal interstitium. American Journal of Kidney Diseases, 36, 615–625.

    Article  PubMed  Google Scholar 

  13. de Water, R., Leenen, P. J., Noordermeer, C., Nigg, A. L., Houtsmuller, A. B., Kok, D. J., et al. (2001). Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. American Journal of Kidney Diseases, 38, 331–338.

    Article  PubMed  Google Scholar 

  14. Leonard, M., Ryan, M. P., Watson, A. J., Schramek, H., & Healy, E. (1999). Role of MAP kinase pathways in mediating IL-6 production in human primary mesangial and proximal tubular cells. Kidney International, 56, 1366–1377.

    Article  PubMed  CAS  Google Scholar 

  15. Sean, E. K., & Cockwell, P. (2005). Macrophages and progressive tubulointerstitial disease. Kidney International, 68, 437–455.

    Article  Google Scholar 

  16. Wilson, H. M., Walbaum, D., & Rees, A. J. (2004). Macrophages and the kidney. Current Opinion in Nephrology and Hypertension, 13, 285–290.

    Article  PubMed  CAS  Google Scholar 

  17. Sintiprungrat, K., Singhto, N., Sinchaikul, S., Chen, S. T., & Thongboonkerd, V. (2010). Alterations in cellular proteome and secretome upon differentiation from monocyte to macrophage by treatment with phorbol myristate acetate: Insights into biological processes. Journal of Proteomics, 73, 602–618.

    Article  PubMed  CAS  Google Scholar 

  18. Semangoen, T., Sinchaikul, S., Chen, S. T., & Thongboonkerd, V. (2008). Proteomic analysis of altered proteins in distal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: Implications for kidney stone disease. Proteomics Clinical Applications, 2, 1099–1109.

    Article  PubMed  CAS  Google Scholar 

  19. Thongboonkerd, V., Semangoen, T., Sinchaikul, S., & Chen, S. T. (2008). Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells. Journal of Proteome Research, 7, 4689–4700.

    Article  PubMed  CAS  Google Scholar 

  20. Kinsey, G. R., Li, L., & Okusa, M. D. (2008). Inflammation in acute kidney injury. Nephron Experimental Nephrology, 109, e102–e107.

    Article  PubMed  CAS  Google Scholar 

  21. Coe, F. L., Evan, A., & Worcester, E. (2005). Kidney stone disease. Journal of Clinical Investigation, 115, 2598–2608.

    Article  PubMed  CAS  Google Scholar 

  22. Das, S., Becker, B. N., Hoffmann, F. M., & Mertz, J. E. (2009). Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biology, 10, 94.

    Article  PubMed  Google Scholar 

  23. Mathias, R. A., Wang, B., Ji, H., Kapp, E. A., Moritz, R. L., Zhu, H. J., et al. (2009). Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial–mesenchymal transition. Journal of Proteome Research, 8, 2827–2837.

    Article  PubMed  CAS  Google Scholar 

  24. Hills, C. E., & Squires, P. E. (2010). TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. American Journal of Nephrology, 31, 68–74.

    Article  PubMed  CAS  Google Scholar 

  25. Campanaro, S., Picelli, S., Torregrossa, R., Colluto, L., Ceol, M., Del Prete, D., et al. (2007). Genes involved in TGF beta1-driven epithelial–mesenchymal transition of renal epithelial cells are topologically related in the human interactome map. BMC Genomics, 8, 383.

    Article  PubMed  Google Scholar 

  26. Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemical Journal, 348(2), 241–255.

    Article  PubMed  CAS  Google Scholar 

  27. Hutchison, N., Hendry, B. M., & Sharpe, C. C. (2009). Rho isoforms have distinct and specific functions in the process of epithelial to mesenchymal transition in renal proximal tubular cells. Cellular Signalling, 21, 1522–1531.

    Article  PubMed  CAS  Google Scholar 

  28. Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., Engel, M. E., et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Molecular Biology of the Cell, 12, 27–36.

    Article  PubMed  CAS  Google Scholar 

  29. Fukata, M., Nakagawa, M., & Kaibuchi, K. (2003). Roles of Rho-family GTPases in cell polarisation and directional migration. Current Opinion in Cell Biology, 15, 590–597.

    Article  PubMed  CAS  Google Scholar 

  30. Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science, 307, 1603–1609.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, H. R., Zhang, Y., Ozdamar, B., Ogunjimi, A. A., Alexandrova, E., Thomsen, G. H., et al. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science, 302, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  32. Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Science, 120, 3491–3499.

    Article  PubMed  CAS  Google Scholar 

  33. Gunaratne, A., Thai, B. L., & Di Guglielmo, G. M. (2013). Atypical protein kinase C phosphorylates Par6 and facilitates transforming growth factor beta-induced epithelial-to-mesenchymal transition. Molecular and Cellular Biology, 33, 874–886.

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez-Iturbe, B., & Garcia, G. G. (2010). The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clinical Practice, 116, c81–c88.

    Article  PubMed  CAS  Google Scholar 

  35. Xie, P., Sun, L., Nayak, B., Haruna, Y., Liu, F. Y., Kashihara, N., et al. (2009). C/EBP-beta modulates transcription of tubulointerstitial nephritis antigen in obstructive uropathy. Journal of the American Society of Nephrology, 20, 807–819.

    Article  PubMed  CAS  Google Scholar 

  36. Tan, T. K., Zheng, G., Hsu, T. T., Wang, Y., Lee, V. W., Tian, X., et al. (2010). Macrophage matrix metalloproteinase-9 mediates epithelial–mesenchymal transition in vitro in murine renal tubular cells. American Journal of Pathology, 176, 1256–1270.

    Article  PubMed  CAS  Google Scholar 

  37. Nelson, W. J., & Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303, 1483–1487.

    Article  PubMed  CAS  Google Scholar 

  38. Zavadil, J., Cermak, L., Soto-Nieves, N., & Bottinger, E. P. (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO Journal, 23, 1155–1165.

    Article  PubMed  CAS  Google Scholar 

  39. Kattla, J. J., Carew, R. M., Heljic, M., Godson, C., & Brazil, D. P. (2008). Protein kinase B/Akt activity is involved in renal TGF-beta1-driven epithelial–mesenchymal transition in vitro and in vivo. American Journal of Physiology-Renal Physiology, 295, F215–F225.

    Article  PubMed  CAS  Google Scholar 

  40. Liu, Y. (2006). Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney International, 69, 213–217.

    Article  PubMed  CAS  Google Scholar 

  41. Saad, S., Stanners, S. R., Yong, R., Tang, O., & Pollock, C. A. (2010). Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. International Journal of Biochemistry & Cell Biology, 42, 1115–1122.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Paleerath Peerapen for her technical assistance. This study was supported by The Thailand Research Fund (RTA5380005 and TRG5480005), Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative, and Faculty of Medicine Siriraj Hospital. KS is supported by the Royal Golden Jubilee PhD Program, whereas VT is also supported by the “Chalermphrakiat” Grant, Faculty of Medicine Siriraj Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visith Thongboonkerd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanlaya, R., Sintiprungrat, K. & Thongboonkerd, V. Secreted Products of Macrophages Exposed to Calcium Oxalate Crystals Induce Epithelial Mesenchymal Transition of Renal Tubular Cells via RhoA-Dependent TGF-β1 Pathway. Cell Biochem Biophys 67, 1207–1215 (2013). https://doi.org/10.1007/s12013-013-9639-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9639-z

Keywords

Navigation