Skip to main content
Log in

Differential Expression of Dicer, miRNAs, and Inflammatory Markers in Diabetic Ins2+/− Akita Hearts

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy is a leading cause of morbidity and mortality, and Insulin2 mutant (Ins2+/−) Akita is a genetic mice model of diabetes relevant to humans. Dicer, miRNAs, and inflammatory cytokines are associated with heart failure. However, the differential expression of miRNAs, dicer, and inflammatory molecules are not clear in diabetic cardiomyopathy of Akita. We measured the levels of miRNAs, dicer, pro-inflammatory tumor necrosis factor alpha (TNFα), and anti-inflammatory interleukin 10 (IL-10) in C57BL/6J (WT) and Akita hearts. The results revealed increased heart to body weight ratio and robust expression of brain natriuretic peptide (BNP: a hypertrophy marker) suggesting cardiac hypertrophy in Akita. The multiplex RT-PCR, qPCR, and immunoblotting showed up regulation of dicer, whereas miRNA array elicited spread down regulation of miRNAs in Akita including dramatic down regulation of let-7a, miR-130, miR-142-3p, miR-148, miR-338, miR-345-3p, miR-384-3p, miR-433, miR-450, miR-451, miR-455, miR-494, miR-499, miR-500, miR-542-3p, miR-744, and miR-872. Conversely, miR-295 is induced in Akita. Cardiac TNFα is upregulated at mRNA (RT-PCR and qPCR), protein (immunoblotting), and cellular (immunohistochemistry and confocal microscopy) levels, and is robust in hypertrophic cardiomyocytes suggesting direct association of TNFα with hypertrophy. Contrary to TNFα, cardiac IL-10 is downregulated in Akita. In conclusion, induction of dicer and TNFα, and attenuation of IL-10 and majority of miRNA are associated with cardiomyopathy in Akita and could be used for putative therapeutic target for heart failure in diabetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garin, I., Edghill, E. L., Akerman, I., Rubio-Cabezas, O., Rica, I., Locke, J. M., et al. (2010). Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3105–3110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Barber, A. J., Antonetti, D. A., Kern, T. S., Reiter, C. E., Soans, R. S., Krady, J. K., et al. (2005). The Ins2Akita mouse as a model of early retinal complications in diabetes. Investigative Ophthalmology and Visual Science, 46(6), 2210–2218.

    Article  PubMed  Google Scholar 

  3. Chang, J. H., Paik, S. Y., Mao, L., Eisner, W., Flannery, P. J., Wang, L., et al. (2012). Diabetic kidney disease in FVB/NJ Akita mice: Temporal pattern of kidney injury and urinary nephrin excretion. PLoS ONE, 7(4), e33942.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mishra, P. K., Givvimani, S., Metreveli, N., & Tyagi, S. C. (2010). Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochemical and Biophysical Research Communications, 401(2), 175–181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mishra, P. K., Tyagi, N., Sen, U., Joshua, I. G., & Tyagi, S. C. (2010). Synergism in hyperhomocysteinemia and diabetes: Role of PPAR gamma and tempol. Cardiovascular Diabetology, 9, 49.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Izumi, T., Yokota-Hashimoto, H., Zhao, S., Wang, J., Halban, P. A., & Takeuchi, T. (2003). Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes, 52(2), 409–416.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J., Takeuchi, T., Tanaka, S., Kubo, S. K., Kayo, T., Lu, D., et al. (1999). A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. Journal of Clinical Investigation, 103(1), 27–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hartemann, A., & Bourron, O. (2012). Interleukin-2 and type 1 diabetes: New therapeutic perspectives. Diabetes and Metabolism, 38(5), 387–391.

    Article  CAS  PubMed  Google Scholar 

  9. Epstein, P. N., Overbeek, P. A., & Means, A. R. (1989). Calmodulin-induced early-onset diabetes in transgenic mice. Cell, 58(6), 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  10. Li, Y., Hamasaki, T., Teruya, K., Nakamichi, N., Gadek, Z., Kashiwagi, T., et al. (2012). Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology, 64(3), 281–297.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Li, Y. Y., Liu, H. H., Chen, H. L., & Li, Y. P. (2012). Adipose-derived mesenchymal stem cells ameliorate STZ-induced pancreas damage in type 1 diabetes. BioMedical Materials and Engineering, 22(1), 97–103.

    PubMed  Google Scholar 

  12. Yaghmaei, P., Esfahani-Nejad, H., Ahmadi, R., Hayati-Roodbari, N., & Ebrahim-Habibi, A. (2012). Maternal zinc intake of Wistar rats has a protective effect in the alloxan-induced diabetic offspring. Journal of Physiology and Biochemistry, 69(1), 35–43.

    Article  PubMed  Google Scholar 

  13. Mishra, P. K., Chavali, V., Metreveli, N., & Tyagi, S. C. (2012). Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: A role of extracellular matrix. Canadian Journal of Physiology and Pharmacology, 90(3), 353–360.

    Article  CAS  PubMed  Google Scholar 

  14. Patel, V. B., Bodiga, S., Basu, R., Das, S. K., Wang, W., Wang, Z., et al. (2012). Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: A critical role of the angiotensin II/AT1 receptor axis. Circulation Research, 110(10), 1322–1335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  16. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kawashima, T., & Shioi, T. (2011). MicroRNA, emerging role as a biomarker of heart failure. Circulation Journal, 75(2), 268–269.

    Article  PubMed  Google Scholar 

  18. Mishra, P. K., Tyagi, N., Kumar, M., & Tyagi, S. C. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 13(4), 778–789.

    Article  CAS  PubMed  Google Scholar 

  19. Ono, K., Kuwabara, Y., & Han, J. (2011). MicroRNAs and cardiovascular diseases. FEBS Journal, 278(10), 1619–1633.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Papageorgiou, N., Tousoulis, D., Androulakis, E., Siasos, G., Briasoulis, A., Vogiatzi, G., et al. (2012). The role of microRNAs in cardiovascular disease. Current Medicinal Chemistry, 19(16), 2605–2610.

    Article  CAS  PubMed  Google Scholar 

  21. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.

    Article  CAS  PubMed  Google Scholar 

  22. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Greco, S., Fasanaro, P., Castelvecchio, S., D’Alessandra, Y., Arcelli, D., Di, D. M., et al. (2012). MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes, 61(6), 1633–1641.

    Article  CAS  PubMed  Google Scholar 

  24. Guay, C., Roggli, E., Nesca, V., Jacovetti, C., & Regazzi, R. (2011). Diabetes mellitus, a microRNA-related disease? Translational Research, 157(4), 253–264.

    Article  CAS  PubMed  Google Scholar 

  25. Kantharidis, P., Wang, B., Carew, R. M., & Lan, H. Y. (2011). Diabetes complications: The microRNA perspective. Diabetes, 60(7), 1832–1837.

    Article  CAS  PubMed  Google Scholar 

  26. Tyagi, A. C., Sen, U., & Mishra, P. K. (2011). Synergy of microRNA and stem cell: A novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Current Diabetes Review, 7(6), 367–376.

    Article  CAS  Google Scholar 

  27. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.

    Article  CAS  PubMed  Google Scholar 

  28. Feng, B., Chen, S., George, B., Feng, Q., & Chakrabarti, S. (2010). miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism: Research and Reviews, 26(1), 40–49.

    Article  CAS  Google Scholar 

  29. Belevych, A. E., Sansom, S. E., Terentyeva, R., Ho, H. T., Nishijima, Y., Martin, M. M., et al. (2011). MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS ONE, 6(12), e28324.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., et al. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. Journal of Biological Chemistry, 283(29), 20045–20052.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282(17), 12363–12367.

    Article  CAS  PubMed  Google Scholar 

  32. Castoldi, G., Di Gioia, C. R., Bombardi, C., Catalucci, D., Corradi, B., Gualazzi, M. G., et al. (2012). MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology, 227(2), 850–856.

    Article  CAS  PubMed  Google Scholar 

  33. Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., LE Dorn, Condorelli, G., et al. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106(1), 166–175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chavali, V., Tyagi, S. C., & Mishra, P. K. (2012). MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochemical and Biophysical Research Communications, 425(3), 668–672.

    Article  CAS  PubMed  Google Scholar 

  35. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.

    Article  CAS  PubMed  Google Scholar 

  36. Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience, 28(17), 4322–4330.

    Article  CAS  PubMed  Google Scholar 

  37. Koralov, S. B., Muljo, S. A., Galler, G. R., Krek, A., Chakraborty, T., Kanellopoulou, C., et al. (2008). Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell, 132(5), 860–874.

    Article  CAS  PubMed  Google Scholar 

  38. Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101(1), 59–68.

    Article  CAS  PubMed  Google Scholar 

  39. Lynn, F. C., Skewes-Cox, P., Kosaka, Y., McManus, M. T., Harfe, B. D., & German, M. S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 56(12), 2938–2945.

    Article  CAS  PubMed  Google Scholar 

  40. Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., et al. (2007). Critical roles for Dicer in the female germline. Genes and Development, 21(6), 682–693.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von, D. M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2111–2116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Da Costa Martins, P. A., Bourajjaj, M., Gladka, M., Kortland, M., van Oort, R. J., Pinto, Y. M., et al. (2008). Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 118(15), 1567–1576.

    Article  PubMed  Google Scholar 

  44. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M., & Takahashi, T. (2008). let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis, 29(11), 2073–2077.

    Article  CAS  PubMed  Google Scholar 

  45. Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  46. Moschos, S. A., Williams, A. E., Perry, M. M., Birrell, M. A., Belvisi, M. G., & Lindsay, M. A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Perry, M. M., Moschos, S. A., Williams, A. E., Shepherd, N. J., Larner-Svensson, H. M., & Lindsay, M. A. (2008). Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. Journal of Immunology, 180(8), 5689–5698.

    CAS  Google Scholar 

  48. Roy, S., & Sen, C. K. (2011). miRNA in innate immune responses: Novel players in wound inflammation. Physiological Genomics, 43(10), 557–565.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, J. F., Yu, M. L., Yu, G., Bian, J. J., Deng, X. M., Wan, X. J., et al. (2010). Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochemical and Biophysical Research Communications, 394(1), 184–188.

    Article  CAS  PubMed  Google Scholar 

  50. Zeng, J. R., Xu, X. L., Yu, X. J., Hou, J., Xu, T. J., Mi, M., et al. (2012). Dynamic correlation of TNF-alpha and IL-10 with myocardial remodeling induced by pressure overload in rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 28(7), 699–701.

    CAS  PubMed  Google Scholar 

  51. Cain, B. S., Meldrum, D. R., Dinarello, C. A., Meng, X., Joo, K. S., Banerjee, A., et al. (1999). Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Critical Care Medicine, 27(7), 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  52. Bozkurt, B., Kribbs, S. B., Clubb, F. J, Jr, Michael, L. H., Didenko, V. V., Hornsby, P. J., et al. (1998). Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 97(14), 1382–1391.

    Article  CAS  PubMed  Google Scholar 

  53. Calle, M. C., & Fernandez, M. L. (2012). Inflammation and type 2 diabetes. Diabetes and Metabolism, 38(3), 183–191.

    Article  CAS  PubMed  Google Scholar 

  54. Bradham, W. S., Bozkurt, B., Gunasinghe, H., Mann, D., & Spinale, F. G. (2002). Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: A current perspective. Cardiovascular Research, 53(4), 822–830.

    Article  CAS  PubMed  Google Scholar 

  55. Bradham, W. S., Moe, G., Wendt, K. A., Scott, A. A., Konig, A., Romanova, M., et al. (2002). TNF-alpha and myocardial matrix metalloproteinases in heart failure: Relationship to LV remodeling. American Journal of Physiology: Heart and Circulatory Physiology, 282(4), H1288–H1295.

    CAS  PubMed  Google Scholar 

  56. Dhingra, S., Bagchi, A. K., Ludke, A. L., Sharma, A. K., & Singal, P. K. (2011). Akt regulates IL-10 mediated suppression of TNFalpha-induced cardiomyocyte apoptosis by upregulating Stat3 phosphorylation. PLoS ONE, 6(9), e25009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Krishnamurthy, P., Rajasingh, J., Lambers, E., Qin, G., Losordo, D. W., & Kishore, R. (2009). IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circulation Research, 104(2), e9–e18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Verma, S. K., Krishnamurthy, P., Barefield, D., Singh, N., Gupta, R., Lambers, E., et al. (2012). Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-kappaB. Circulation, 126(4), 418–429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Barac, A., Wang, H., Shara, N. M., Simone, G., Carter, E. A., Umans, J. G., et al. (2012). Markers of inflammation, metabolic risk factors, and incident heart failure in American Indians: The Strong Heart Study. Journal of Clinical Hypertension (Greenwich), 14(1), 13–19.

    Google Scholar 

  60. Mishra, P. K., Tyagi, N., Kundu, S., & Tyagi, S. C. (2009). MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochemistry and Biophysics, 55(3), 153–162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mishra, P. K., Awe, O., Metreveli, N., Qipshidze, N., Joshua, I. G., & Tyagi, S. C. (2011). Exercise mitigates homocysteine—beta2-adrenergic receptor interactions to ameliorate contractile dysfunction in diabetes. International Journal of Physiology, Pathophysiology and Pharmacology, 3(2), 97–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Salgo, I. S., Tsang, W., Ackerman, W., Ahmad, H., Chandra, S., Cardinale, M., et al. (2012). Geometric assessment of regional left ventricular remodeling by three-dimensional echocardiographic shape analysis correlates with left ventricular function. Journal of the American Society of Echocardiography, 25(1), 80–88.

    Article  PubMed  Google Scholar 

  63. Schaefer, J. S., Montufar-Solis, D., Vigneswaran, N., & Klein, J. R. (2011). Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10-/- mice precedes expression in the colon. Journal of Immunology, 187(11), 5834–5841.

    Article  CAS  Google Scholar 

  64. van de Vrie, M., Heymans, S., & Schroen, B. (2011). MicroRNA involvement in immune activation during heart failure. Cardiovascular Drugs and Therapy, 2, 161–170.

    Article  Google Scholar 

  65. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., et al. (2012). Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation, 125(1), e2–e220.

    Article  PubMed  Google Scholar 

  66. Pignone, M., Alberts, M. J., Colwell, J. A., Cushman, M., Inzucchi, S. E., Mukherjee, D., et al. (2010). Aspirin for primary prevention of cardiovascular events in people with diabetes: A position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care, 33(6), 1395–1402.

    Article  PubMed  Google Scholar 

  67. King, H., Aubert, R. E., & Herman, W. H. (1998). Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care, 21(9), 1414–1431.

    Article  CAS  PubMed  Google Scholar 

  68. Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053.

    Article  PubMed  Google Scholar 

  69. Shantikumar, S., Caporali, A., & Emanueli, C. (2012). Role of microRNAs in diabetes and its cardiovascular complications. Cardiovascular Research, 93(4), 583–593.

    Article  CAS  PubMed  Google Scholar 

  70. Huang, Y., Crawford, M., Higuita-Castro, N., Nana-Sinkam, P., & Ghadiali, S. N. (2012). miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium. FASEB Journal, 26(8), 3351–3364.

    Article  CAS  PubMed  Google Scholar 

  71. Zidar, N., Bostjancic, E., Glavac, D., & Stajer, D. (2011). MicroRNAs, innate immunity and ventricular rupture in human myocardial infarction. Disease Markers, 31(5), 259–265.

    Article  CAS  PubMed  Google Scholar 

  72. Manabe, I. (2011). Chronic inflammation links cardiovascular, metabolic and renal diseases. Circulation Journal, 75(12), 2739–2748.

    Article  CAS  PubMed  Google Scholar 

  73. Rosner, M. H., Ronco, C., & Okusa, M. D. (2012). The role of inflammation in the cardio-renal syndrome: A focus on cytokines and inflammatory mediators. Seminars in Nephrology, 32(1), 70–78.

    Article  CAS  PubMed  Google Scholar 

  74. Monsefi, N., Zierer, A., Bakhtiary, F., Vogl, T., Ackermann, H., Kleine, P., et al. (2012). Spherical dilatation of the apex in failing left ventricles: A target for surgical remodelling techniques. Journal of Cardiovascular Surgery (Torino), 53(4), 545–552.

    CAS  Google Scholar 

  75. Basu, R., Oudit, G. Y., Wang, X., Zhang, L., Ussher, J. R., Lopaschuk, G. D., et al. (2009). Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. American Journal of Physiology: Heart and Circulatory Physiology, 297(6), H2096–H2108.

    CAS  PubMed  Google Scholar 

  76. Staszel, T., Zapala, B., Polus, A., Sadakierska-Chudy, A., Kiec-Wilk, B., Stepien, E., et al. (2011). Role of microRNAs in endothelial cell pathophysiology. Polskie Archiwum Medycyny Wewnetrznej, 121(10), 361–366.

    CAS  PubMed  Google Scholar 

  77. Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178.

    Article  CAS  PubMed  Google Scholar 

  78. Medeiros, L. A., Dennis, L. M., Gill, M. E., Houbaviy, H., Markoulaki, S., Fu, D., et al. (2011). Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14163–14168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.

    Article  CAS  PubMed  Google Scholar 

  80. Johnnidis, J. B., Harris, M. H., Wheeler, R. T., Stehling-Sun, S., Lam, M. H., Kirak, O., et al. (2008). Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 451(7182), 1125–1129.

    Article  CAS  PubMed  Google Scholar 

  81. Chao, W. (2009). Toll-like receptor signaling: A critical modulator of cell survival and ischemic injury in the heart. American Journal of Physiology: Heart and Circulatory Physiology, 296(1), H1–H12.

    CAS  PubMed  Google Scholar 

  82. Mann, D. L., Topkara, V. K., Evans, S., & Barger, P. M. (2010). Innate immunity in the adult mammalian heart: For whom the cell tolls. Transactions of the American Clinical and Climatological Association, 121, 34–50.

    PubMed Central  PubMed  Google Scholar 

  83. Garlie, J. B., Hamid, T., Gu, Y., Ismahil, M. A., Chandrasekar, B., & Prabhu, S. D. (2011). Tumor necrosis factor receptor 2 signaling limits beta-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Research in Cardiology, 106(6), 1193–1205.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial supports from American Heart Association Grant (11BGIA 7690055) and National Institute of Health (HL-113281) to P.K.M. and National Institute of Health (HL-108621 and HL-74185) to S.C.T. is gratefully acknowledged.

Conflict of interest

Authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishalakshi Chavali or Paras Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavali, V., Tyagi, S.C. & Mishra, P.K. Differential Expression of Dicer, miRNAs, and Inflammatory Markers in Diabetic Ins2+/− Akita Hearts. Cell Biochem Biophys 68, 25–35 (2014). https://doi.org/10.1007/s12013-013-9679-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9679-4

Keywords

Navigation