Skip to main content
Log in

Effect of Different Iodine Concentrations on Well-Differentiated Thyroid Cancer Cell Behavior and its Inner Mechanism

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

High iodine intake might be an important factor in the promotion of thyroid cancer and the incidence of thyroid carcinoma has increased obviously these years especially in area of high iodine intake, though the mechanism of which remains unknown. The aim of present study was to gain more insight into the influence of different iodine concentrations on cell behavior, such as proliferation and migration, and to further investigate its molecular mechanism using two well-differentiated thyroid cancer cell lines. Our study evaluated the effect of different iodine concentrations on cell behavior and investigated relevant molecules involved. The results indicated that iodine in vitro could promote the growth of thyroid cancer cells with the increase of iodine concentration in a specific range. Such effect may be related to signaling pathways as Akt and Erk and cytokine VEGF-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morris Luc, G., Sikora Andrew, G., Tosteson Tor, D., et al. (2013). The increasing incidence of thyroid cancer: the influence of access to care. Thyroid, 23(7), 886–892.

    Google Scholar 

  2. Olaleye, O., Ekrikpo, U., Moorthy, R., et al. (2011). Increasing incidence of differentiated thyroid cancer in South East England: 1987–2006. European Archives of Oto-Rhino-Laryngology, 268(6), 899–906.

    Article  PubMed  Google Scholar 

  3. Enewold, L., Zhu, K., Ron, E., et al. (2009). Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiology Biomarkers and Prevention, 18(3), 784–791.

    Article  Google Scholar 

  4. Davies, L., & Welch, H. G. (2006). Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA, 295(18), 2164–2167.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, S., Semenciw, R., Ugnat, A. M., et al. (2001). Increasing thyroid cancer incidence in Canada, 1970–1996: Time trends and age-period-cohort effects. British Journal of Cancer, 85(9), 1335–1339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Burgess, J. R. (2002). Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982–1997). Thyroid, 12(2), 141–149.

    Article  PubMed  Google Scholar 

  7. Jung, K. W., Park, S., Kong, H. J., et al. (2012). Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2009. Cancer Research and Treatment, 44(1), 11–24.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Leenhardt, L., Grosclaude, P., & Cherie-Challine, L. (2004). Increased incidence of thyroid carcinoma in france: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid, 14(12), 1056–1060.

    Article  PubMed  Google Scholar 

  9. Teng, W., Shan, Z., Teng, X., et al. (2006). Effect of iodine intake on thyroid disease in China. The New England Journal of Medicine, 354(26), 2783–2793.

    Article  CAS  PubMed  Google Scholar 

  10. Dal Maso, L., Bosetti, C., La Vecchia, C., et al. (2009). Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes and Control, 20(1), 75–86.

    Article  PubMed  Google Scholar 

  11. Dijkstra, B., Prichard, R. S., Lee, A., et al. (2007). Changing patterns of thyroid carcinoma. Irish Journal of Medical Science, 176(2), 87–90.

    Article  CAS  PubMed  Google Scholar 

  12. Maier, J., van Steeg, H., van Oostrom, C., et al. (2007). Iodine deficiency activates antioxidant genes and causes DNA damage in the thyroid gland of rats and mice. Biochimica et Biophysica Acta, 1773(6), 990–999.

    Article  CAS  PubMed  Google Scholar 

  13. Cho, B. Y., Choi, H. S., Park, Y. J., et al. (2013). Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades. Thyroid, 23(7), 797–804.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dong, W., Zhang, H., Zhang, P., et al. (2013). The changing incidence of thyroid carcinoma in Shenyang, China before and after universal salt iodization. Medical Science Monitor, 19, 49–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liu, Y. Q., Zhang, S. Q., Chen, W. Q., et al. (2012). Trend of incidence and mortality on thyroid cancer in China during 2003–2007. Zhonghua liuxingbingxue zazhi, 33(10), 1044–1048.

    PubMed  Google Scholar 

  16. Shaul, Y. D., & Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et Biophysica Acta, 1773(8), 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  17. Dvorak, H. F. (2002). Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. Journal of Clinical Oncology, 20(21), 4368–4380.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676.

    Article  CAS  PubMed  Google Scholar 

  19. Toi, M., Matsumoto, T., & Bando, H. (2001). Vascular endothelial growth factor: Its prognostic, predictive, and therapeutic implications. Lancet Oncology, 2(11), 667–673.

    Article  CAS  Google Scholar 

  20. Zhou, Y., Guan, X., Yu, M., et al. (2014). Angiogenic/osteogenic response of BMMSCs on bone-derived scaffold: Effect of hypoxia and role of PI3K/Akt-mediated VEGF-VEGFR pathway. Journal of Biotechnology, 9(7), 944–953.

Download references

Acknowledgments

This work has been supported by Grants from the Major Project of Shanghai Municipal Science and Technology Commission (11DJ1400203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoying Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Wang, X., Wang, Z. et al. Effect of Different Iodine Concentrations on Well-Differentiated Thyroid Cancer Cell Behavior and its Inner Mechanism. Cell Biochem Biophys 71, 299–305 (2015). https://doi.org/10.1007/s12013-014-0198-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0198-8

Keywords

Navigation