Skip to main content
Log in

Role of Liver in Modulating the Release of Inflammatory Cytokines Involved in Lung and Multiple Organ Dysfunction in Severe Acute Pancreatitis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study was to understand the role of liver in modulating remote organ dysfunction during severe acute pancreatitis (SAP). We used sodium taurocholate and endotoxin to induce SAP in the rats and confirmed the development of this condition by measuring serum and ascite levels of the biomarkers of liver and lung damage. Our results showed that expression of tumor necrosis factor (TNF)-α was up-regulated sequentially, first in the gut, then in the liver, and finally in lung. Moreover, the SAP-induced increase in the expressions of TNF-α and IL-6 occurring in gut, liver, and lung was directly related to the increase in time. However, in liver and lung, the transcriptional activity of NF-κB and expression of TNF-α at 4 and 8 h were not increased. The distribution sequence of the pro-inflammatory cytokines to various organs was determined by their detection in the blood from portal vein and inferior vena cava. Although liver received TNF-α during 0.5–8 h of the SAP induction, the release of this cytokine into vena cava was not increased in this period of time. In conclusion, our results suggest that the aggravation of SAP leading to development of MODS exhibited the gut-liver-lung cytokine axis. Furthermore, this study indicates that liver performs both protective and stimulatory activities in the modulation of pro-inflammatory cytokine generation and their distribution to remote organs, such as lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

ARDS:

Acute respiratory distress syndrome

COX-2:

Cyclooxygenase-2

DAO:

Diamine oxidase

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetic acid

EMSA:

Electrophoretic mobility shift assay

ESAP:

Early severe acute pancreatitis

FAP:

Fulminant acute pancreatitis

TNF-α:

Tumor necrosis factor α

GdCl3:

Gadolinium chloride

HEPES:

Hydroxyethyl piperazine ethanesulfonic acid

IL-6:

Interleukin 6

LPS:

Lipopolysaccharide

MODS:

Multiple organ dysfunction syndrome

MOF:

Multi-organ failure

PDTC:

Pyrrolidine dithiocarbamate

PMSF:

Phenylmethylsulfonyl fluoride

SAP:

Severe acute pancreatitis

SD rat:

Sprague–Dawley rat

SIRS:

Systemic inflammatory response syndrome

The SO Group:

The sham operation group

SP:

Streptomycin avidin-peroxidase

References

  1. Beger, H. G., & Isenmann, R. (1999). Surgical management of necrotizing pancreatitis. Surgical Clinics of North America, 79, 783–800.

    Article  CAS  PubMed  Google Scholar 

  2. Bradley, E. L, 3rd. (1993). A fifteen year experience with open drainage for infected pancreatic necrosis. Surgery, Gynecology and Obstetrics, 177, 215–222.

    PubMed  Google Scholar 

  3. Tsiotos, G. G., Luque-de Leon, E., Soreide, J. A., Bannon, M. P., Zietlow, S. P., Baerga-Varela, Y., & Sarr, M. G. (1998). Management of necrotizing pancreatitis by repeated operative necrosectomy using a zipper technique. American Journal of Surgery, 175, 91–98.

  4. Ronstein, O. D. (2000). Pathogenesis of multiple organ dysfunction syndrome: Gut origin, protection, and decontamination. Surgical Infections, 1(3), 217–225.

    Article  Google Scholar 

  5. Sharma, M., Garg, D., & Banerjee, P. K. (2007). Characterization of newer subgroups of fulminant and subfulminant pancreatitis associated with a high early mortality. American Journal of Gastroenterology, 102, 2688–2695.

    Article  PubMed  Google Scholar 

  6. Isenmann, R., Rau, B., & Beger, H. G. (2001). Early severe acute pancreatitis: characteristics of a new subgroup. Pancreas, 22, 274–278.

    Article  CAS  PubMed  Google Scholar 

  7. Sadikot, R. T., Wudel, L. J., Jansen, D. E., Debelak, J. P., Yull, F. E., Christman, J. W., et al. (2002). Hepatic cryoablation-induced multisystem injury: Bioluminescent detection of NF-kappaB activation in a transgenic mouse model. Journal of Gastrointestinal Surgery, 6, 264–270.

    Article  PubMed  Google Scholar 

  8. Mikami, Y., Takeda, K., Shibuya, K., Qiu-Feng, H., Shimamura, H., Yamauchi, J., et al. (2003). Do peritoneal macrophages play an essential role in the progression of acute pancreatitis in rats? Pancreas, 27, 253–260.

    Article  PubMed  Google Scholar 

  9. Harper, S. J. F., & Cheslyn-Curtis, S. (2011). Acute pancreatitis. Annals of Clinical Biochemistry, 48, 23.

    Article  CAS  PubMed  Google Scholar 

  10. Phillip, V., Steiner, J. M., & Algül, H. (2014). Early phase of acute pancreatitis: Assessment and management. World Journal of Gastrointestinal Pathophysiology, 5(3), 158–168.

    PubMed Central  PubMed  Google Scholar 

  11. Bhagat, S., Wadhawan, M., Sud, R., & Arora, A. (2008). Hepatitis viruses causing pancreatitis and hepatitis: A case series and review of literature. Pancreas, 36, 424–427.

    Article  PubMed  Google Scholar 

  12. Frossard, J. L., Lescuyer, P., & Pastor, C. M. (2009). Experimental evidence of obesity as a risk factor for severe acute pancreatitis. World Journal of Gastroenterology, 15, 5260–5265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dugernier, T., Starkel, P., Laterre, P. F., & Reynaert, M. S. (1996). Severe acute pancreatitis: Pathophysiologic mechanisms underlying pancreatic necrosis and remote organ damage. Acta Gastro-enterologica Belgica, 59, 178–185.

    CAS  PubMed  Google Scholar 

  14. Regner, S., Manjer, J., Appelros, S., Hjalmarsson, C., Sadic, J., & Borgstrom, A. (2008). Protease activation, pancreatic leakage, and inflammation in acute pancreatitis: Differences between mild and severe cases and changes over the first three days. Pancreatology, 8, 600–607.

    Article  CAS  PubMed  Google Scholar 

  15. Toouli, J., Brooke-Smith, M., Bassi, C., Carr-Locke, D., Telford, J., Freeny, P., et al. (2002). Guidelines for the management of acute pancreatitis. Journal of Gastroenterology and Hepatology, 17(Suppl), S15–S39.

    Article  PubMed  Google Scholar 

  16. Wang, Z. F., Pan, C. E., Lu, Y., Liu, S. G., Zhang, G. J., & Zhang, X. B. (2003). The role of inflammatory mediators in severe acute pancreatitis and regulation of glucocorticoids. Hepatobiliary & Pancreatic Diseases International, 2, 458–462.

    CAS  Google Scholar 

  17. Zhang, X. P., Li, Z. J., & Zhang, J. (2009). Inflammatory mediators and microcirculatory disturbance in acute pancreatitis. Hepatobiliary & Pancreatic Diseases International, 8, 351–357.

    CAS  Google Scholar 

  18. Norman, J. G., Fink, G. W., & Franz, M. G. (1995). Acute pancreatitis induces intrapancreatic tumor necrosis factor gene expression. Archives of Surgery, 130, 966–970.

    Article  CAS  PubMed  Google Scholar 

  19. Pooran, N., Indaram, A., Singh, P., & Bank, S. (2003). Cytokines (IL-6, IL-8, TNF): Early and reliable predictors of severe acute pancreatitis. Journal of Clinical Gastroenterology, 37, 263–266.

    Article  CAS  PubMed  Google Scholar 

  20. Sathyanarayan, G., Garg, P. K., Prasad, H., & Tandon, R. K. (2007). Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis. Journal of Gastroenterology and Hepatology, 22, 550–554.

    Article  CAS  PubMed  Google Scholar 

  21. Frossard, J. L., Hadengue, A., & Pastor, C. M. (2001). New serum markers for the detection of severe acute pancreatitis in humans. American Journal of Respiratory and Critical Care Medicine, 164, 162–170.

    Article  CAS  PubMed  Google Scholar 

  22. Oruc, N., Ozutemiz, A. O., Yukselen, V., Nart, D., Celik, H. A., Yuce, G., et al. (2004). Infliximab: a new therapeutic agent in acute pancreatitis? Pancreas, 28, e1–e8.

    Article  PubMed  Google Scholar 

  23. Reding, T., Bimmler, D., Perren, A., Sun, L. K., Fortunato, F., Storni, F., et al. (2006). A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): Significant reduction of macrophage infiltration and fibrosis. Gut, 55, 1165–1173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Closa, D., Bardaji, M., Hotter, G., Prats, N., Gelpi, E., Fernandez-Cruz, L., et al. (1996). Hepatic involvement in pancreatitis-induced lung damage. American Journal of Physiology, 270, G6–G13.

    CAS  PubMed  Google Scholar 

  25. Closa, D., Sabater, L., Fernandez-Cruz, L., Prats, N., Gelpi, E., & Rosello-Catafau, J. (1999). Activation of alveolar macrophages in lung injury associated with experimental acute pancreatitis is mediated by the liver. Annals of Surgery, 229, 230–236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Folch-Puy, E. (2007). Importance of the liver in systemic complications associated with acute pancreatitis: the role of Kupffer cells. The Journal of Pathology, 211, 383–388.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, H. B., Cui, N. Q., Li, D. H., & Chen, C. (2006). Role of Kupffer cells in acute hemorrhagic necrotizing pancreatitis-associated lung injury of rats. World Journal of Gastroenterology, 12, 403–407.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Shifrin, A. L., Chirmule, N., Zhang, Y., & Raper, S. E. (2005). Macrophage ablation attenuates adenoviral vector-induced pancreatitis. Surgery, 137, 545–551.

    Article  PubMed  Google Scholar 

  29. Wang, Y. L., Zheng, Y. J., Zhang, Z. P., Su, J. Y., Lei, R. Q., Tang, Y. Q., et al. (2009). Effects of gut barrier dysfunction and NF-kappaB activation on aggravating mechanism of severe acute pancreatitis. Journal of Digestive Diseases, 10, 30–34.

    Article  CAS  PubMed  Google Scholar 

  30. Aho, H. J., Suonpaa, K., Ahola, R. A., & Nevalainen, T. J. (1984). Experimental pancreatitis in the rat. Ductal factors in sodium taurocholate-induced acute pancreatitis. Experimental Pathology, 25, 73–79.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, W., Xue, P., Liu, T. T., Huang, L., Xiang, D. K., Wang, L., & Xia, Q.(2007). Clinical study on 100 cases of severe acute pancreatitis in aged patients. Zhong Xi Yi Jie He Xue Bao, 5, 268–271.

  32. Zhu, H. H., & Jiang, L. L. (2012). Serum inter-cellular adhesion molecule 1 is an early marker of diagnosis and prediction of severe acute pancreatitis. The World Journal of Gastroenterology, 18, 2554–2560.

    Article  CAS  Google Scholar 

  33. Su, K. H., Cuthbertson, C., & Christophi, C. (2006). Review of experimental animal models of acute pancreatitis. HPB (Oxford), 8, 264–286.

    Article  Google Scholar 

  34. Ryan, C. M., Schmidt, J., Lewandrowski, K., Compton, C. C., Rattner, D. W., Warshaw, A. L., et al. (1993). Gut macromolecular permeability in pancreatitis correlates with severity of disease in rats. Gastroenterology, 104, 890–895.

    CAS  PubMed  Google Scholar 

  35. Ammori, B. J., Fitzgerald, P., Hawkey, P., & McMahon, M. J. (2003). The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation: molecular investigation of microbial DNA in the blood. Pancreas, 26, 18–22.

    Article  CAS  PubMed  Google Scholar 

  36. Kazantsev, G. B., Hecht, D. W., Rao, R., Fedorak, I. J., Gattuso, P., Thompson, K., et al. (1994). Plasmid labeling confirms bacterial translocation in pancreatitis. The American Journal of Surgery, 167, 201–206. discussion 206–207.

    Article  CAS  Google Scholar 

  37. Wang, X. D., Wang, Q., Andersson, R., & Ihse, I. (1996). Alterations in intestinal function in acute pancreatitis in an experimental model. British Journal of Surgery, 83, 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  38. Qiao, S. F., Lu, T. J., Sun, J. B., & Li, F. (2005). Alterations of intestinal immune function and regulatory effects of l-arginine in experimental severe acute pancreatitis rats. World Journal of Gastroenterology, 11, 6216–6218.

    Article  CAS  PubMed  Google Scholar 

  39. Bonham, M. J., Abu-Zidan, F. M., Simovic, M. O., & Windsor, J. A. (1997). Gastric intramucosal pH predicts death in severe acute pancreatitis. British Journal of Surgery, 84, 1670–1674.

    Article  CAS  PubMed  Google Scholar 

  40. Soong, C. V., Lewis, H. G., Halliday, M. I., & Rowlands, B. J. (1999). Intramucosal acidosis and the inflammatory response in acute pancreatitis. American Journal of Gastroenterology, 94, 2423–2429.

    Article  CAS  PubMed  Google Scholar 

  41. Ammori, B. J., Cairns, A., Dixon, M. F., Larvin, M., & McMahon, M. J. (2002). Altered intestinal morphology and immunity in patients with acute necrotizing pancreatitis. Journal of Hepatobiliary Pancreatic Surgery, 9, 490–496.

    Article  PubMed  Google Scholar 

  42. Mayerle, J., Hlouschek, V., & Lerch, M. M. (2005). Current management of acute pancreatitis. Nature Clinical Practice Gastroenterology & Hepatology, 2, 473–483.

    Article  Google Scholar 

  43. Leaphart, C. L., & Tepas, J. J, 3rd. (2007). The gut is a motor of organ system dysfunction. Surgery, 141, 563–569.

    Article  PubMed  Google Scholar 

  44. Gloor, B., Todd, K. E., Lane, J. S., Lewis, M. P., & Reber, H. A. (1998). Hepatic Kupffer cell blockade reduces mortality of acute hemorrhagic pancreatitis in mice. The Journal of Gastrointestinal Surgery, 2, 430–435.

    Article  CAS  Google Scholar 

  45. Folch, E., Prats, N., Hotter, G., Lopez, S., Gelpi, E., Rosello-Catafau, J., et al. (2000). P-selectin expression and Kupffer cell activation in rat acute pancreatitis. Digestive Diseases and Sciences, 45, 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  46. Gloor, B., Blinman, T. A., Rigberg, D. A., Todd, K. E., Lane, J. S., Hines, O. J., et al. (2000). Kupffer cell blockade reduces hepatic and systemic cytokine levels and lung injury in hemorrhagic pancreatitis in rats. Pancreas, 21, 414–420.

    Article  CAS  PubMed  Google Scholar 

  47. Murr, M. M., Yang, J., Fier, A., Kaylor, P., Mastorides, S., & Norman, J. G. (2002). Pancreatic elastase induces liver injury by activating cytokine production within Kupffer cells via nuclear factor-Kappa B. The Journal of Gastrointestinal Surgery, 6, 474–480.

    Article  Google Scholar 

  48. Miyahara, S., & Isaji, S. (2001). Liver injury in acute pancreatitis and mitigation by continuous arterial infusion of an antibiotic via the superior mesenteric artery. Pancreas, 23, 204–211.

    Article  CAS  PubMed  Google Scholar 

  49. Peng, Y., Gallagher, S. F., Haines, K., et al. (2006). Nuclear factor-kappaB mediates Kupffer cell apoptosis through transcriptional activation of Fas/FasL. Journal of Surgical Research, 130, 58–65.

    Article  CAS  PubMed  Google Scholar 

  50. Parbhoo, S. P., Welch, J., & Sherlock, S. (1973). Acute pancreatitis in patients with fulminant hepatic failure. Gut, 14, 428.

    CAS  PubMed  Google Scholar 

  51. Kuo, P. C., Plotkin, J. S., & Johnson, L. B. (1998). Acute pancreatitis and fulminant hepatic failure. Journal of the American College of Surgeons, 187, 522–528.

    Article  CAS  PubMed  Google Scholar 

  52. Grewal, H. P., Kotb, M., el Din, A. M., Ohman, M., Salem, A., Gaber, L., et al. (1994). Induction of tumor necrosis factor in severe acute pancreatitis and its subsequent reduction after hepatic passage. Surgery, 115, 213–221.

    CAS  PubMed  Google Scholar 

  53. Gathiram, P., Wells, M. T., Raidoo, D., Brock-Utne, J. G., & Gaffin, S. L. (1989). Changes in lipopolysaccharide concentrations in hepatic portal and systemic arterial plasma during intestinal ischemia in monkeys. Circulatory Shock, 27, 103–109.

    CAS  PubMed  Google Scholar 

  54. Jacob, A. I., Goldberg, P. K., Bloom, N., Degenshein, G. A., & Kozinn, P. J. (1977). Endotoxin and bacteria in portal blood. Gastroenterology, 72, 1268–1270.

    CAS  PubMed  Google Scholar 

  55. Brivet, F. G., Emilie, D., & Galanaud, P. (1999). Pro- and anti-inflammatory cytokines during acute severe pancreatitis: an early and sustained response, although unpredictable of death. Parisian Study Group on Acute Pancreatitis. Critical Care Medicine, 27, 749–755.

    Article  CAS  PubMed  Google Scholar 

  56. Mayer, J., Rau, B., Gansauge, F., & Beger, H. G. (2000). Inflammatory mediators in human acute pancreatitis: Clinical and pathophysiological implications. Gut, 47, 546–552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lancaster, L. H., Christman, J. W., Blackwell, T. R., et al. (2001). Suppression of lung inflammation in rats by prevention of NF-kappaB activation in the liver. Inflammation, 25, 25–31.

    Article  CAS  PubMed  Google Scholar 

  58. Ethridge, R. T., Hashimoto, K., Chung, D. H., Ehlers, R. A., Rajaraman, S., & Evers, B. M. (2002). Selective inhibition of NF-kappaB attenuates the severity of cerulein-induced acute pancreatitis. Journal of the American College of Surgeons, 195, 497–505.

    Article  PubMed  Google Scholar 

  59. Altavilla, D., Famulari, C., Passaniti, M., Galeano, M., Macri, A., Seminara, P., et al. (2003). Attenuated cerulein-induced pancreatitis in nuclear factor-kappaB-deficient mice. Laboratory Investigation, 83, 1723–1732.

    Article  CAS  PubMed  Google Scholar 

  60. Letoha, T., Somlai, C., Takacs, T., Szabolcs, A., Jarmay, K., Rakonczay, Z, Jr, et al. (2005). A nuclear import inhibitory peptide ameliorates the severity of cholecystokinin-induced acute pancreatitis. World Journal of Gastroenterology, 11, 990–999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Letoha, T., Kusz, E., Papai, G., Szabolcs, A., Kaszaki, J., Varga, I., et al. (2006). In vitro and in vivo nuclear factor-kappaB inhibitory effects of the cell-penetrating penetratin peptide. Molecular Pharmacology, 69, 2027–2036.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Foundation Grant 81001324 (to RT), PhD site special research Grant from Ministry of Education 20100073120094 (to RT), “SMC-Rising Star Funding” from Shanghai Jiaotong University (to RT), and Endowed Professorship (“Oriental Scholar”) funding from Shanghai Municipal Science and Technology Committee (to RT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao.

Additional information

Yilin Wang and Weiyan Liu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, W., Liu, X. et al. Role of Liver in Modulating the Release of Inflammatory Cytokines Involved in Lung and Multiple Organ Dysfunction in Severe Acute Pancreatitis. Cell Biochem Biophys 71, 765–776 (2015). https://doi.org/10.1007/s12013-014-0261-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0261-5

Keywords

Navigation