Skip to main content
Log in

Efficacy of Arsenic Trioxide in the Treatment of Malignant Pleural Effusion Caused by Pleural Metastasis of Lung Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the mechanism of arsenic trioxide (As2O3) in the treatment of malignant pleural effusion (MPE) caused by pleural metastasis of lung cancer. A mouse model of MPE caused by pleural metastasis of lung cancer was first established, and As2O3 was then intraperitoneally injected to treat the MPE. Mice treated with bevacizumab and bleomycin were included as positive controls, and placebo equivalents were also used as negative controls. The effects of As2O3 on MPE volume, pleural vessel density, vascular permeability, expression of angiogenic function-related factors, including vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-α), as well as nuclear factor-κB (NF-κB) activity in pleural carcinomatosis, were observed. Intraperitoneal injection of As2O3 reduced the volume of MPE and decreased vascular density and permeability in pleural metastatic nodules in a dose-dependent manner. Moreover, dose-dependent decreases in VEGF and TNF-α expression in MPE, and NF-κB activity in pleural carcinomatosis, were also found after As2O3 treatment. We showed that As2O3 can down-regulate VEGF expression via inhibition of NF-κB, and decrease vascular density and permeability in pleural metastatic nodules, thereby eliciting its effects on MPE caused by pleural metastasis of lung cancer. Our results provide a foundation for an As2O3-based clinical treatment program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heffner, J. E., & Klein, J. S. (2008). Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clinic Proceedings, 83, 235–250.

    Article  PubMed  Google Scholar 

  2. Zhang, X. W., Yan, X. J., Zhou, Z. R., Yang, F. F., Wu, Z. Y., Sun, H. B., et al. (2010). Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 328, 240–243.

    Article  CAS  PubMed  Google Scholar 

  3. Mi, J. Q., Li, J. M., Shen, Z. X., Chen, S. J., & Chen, Z. (2012). How to manage acute promyelocytic leukemia. Leukemia, 26, 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  4. Li, B., Yang, D. R., Huang, H., & Xiu, Q. Y. (2006). Treatment of malignant pleural effusion by injecting arsenic trioxide into pleural cavity. Journal of Modern Oncology., 14, 1079–1081.

    Google Scholar 

  5. Li, B., Yang, D. R., Huang, H., & Xiu, Q. Y. (2006). The clinical effects of As2O3 in the treatment of lung cancer complicated with pleural effusion. China Oncology, 16, 681–682.

    Google Scholar 

  6. Tan, X. M., Xiu, Q. Y., & Li, B. (2009). Intracavitary administration of arsenic trioxide in treatment of lung cancer complicated with pleural effusion. Academic Journal of Second Military Medical University, 30, 866–868.

    Google Scholar 

  7. Qu, G. P., Xiu, Q. Y., Li, B., Liu, Y. A., & Zhang, L. Z. (2009). Arsenic trioxide inhibits the growth of human lung cancer cell lines via cell cycle arrest and induction of apoptosis at both normoxia and hypoxia. Toxicology and Industrial Health, 25, 505–515.

    Article  CAS  PubMed  Google Scholar 

  8. Ling, Y. H., Jiang, J. D., Holland, J. F., & Perez-Soler, R. (2002). Arsenic trioxide produces polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines. Molecular Pharmacology, 002(62), 529–538.

    Article  Google Scholar 

  9. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S., & Germano, I. (2003). Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Research, 63, 2103–2108.

    CAS  PubMed  Google Scholar 

  10. Soucy, N. V., Ihnat, M. A., Kamat, C. D., Hess, L., Post, M. J., Klei, L. R., et al. (2003). Barchowsky A (2003) Arsenic stimulates angiogenesis and tumorigenesis in vivo. Toxicological Sciences, 76, 271–279.

    Article  CAS  PubMed  Google Scholar 

  11. Griffin, R. J., Monzen, H., Williams, B. W., Park, H., Lee, S. H., & Song, C. W. (2003). Arsenic trioxide induces selective tumour vascular damage via oxidative stressand increases thermosensitivity of tumours. International Journal of Hyperthermia, 19, 575–589.

    Article  CAS  PubMed  Google Scholar 

  12. Baud, V., & Karin, M. (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nature Reviews Drug Discovery, 8, 33–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 6, 297–305.

    Article  CAS  PubMed  Google Scholar 

  14. Bieler, G., Hasmim, M., Monnier, Y., Imaizumi, N., Ameyar, M., Bamat, J., et al. (2007). Distinctive role of integrin-mediated adhesion in TNF-induced PKB/Akt and NF-kappaB activation and endothelial cell survival. Oncogene, 26, 5722–5732.

    Article  CAS  PubMed  Google Scholar 

  15. Hideshima, T., Chauhan, D., Schlossman, R., Richardson, P., & Anderson, K. C. (2001). The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene, 20, 4519–4527.

    Article  CAS  PubMed  Google Scholar 

  16. Wascholowski, V., Giannis, A., & Pitsinos, E. N. (2006). Influence of the scyphostatin side-chain on the mode of inhibition of neutral sphingomyelinase. ChemMedChem, 1, 718–721.

    Article  CAS  PubMed  Google Scholar 

  17. Pitsinos, E. N., & Cruz, A. (2005). Short and efficient route to the fully functionalized polar core of scyphostatin. Organic Letters, 7, 2245–2248.

    Article  CAS  PubMed  Google Scholar 

  18. Wascholowski, V., & Giannis, A. (2001). Neutral sphingomyelinase as a target for drug design. Drug News Perspectives, 14, 581–590.

    CAS  PubMed  Google Scholar 

  19. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Reviews, 25, 581–611.

    Article  CAS  PubMed  Google Scholar 

  20. Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling-in control of vascular function. Nature Reviews Molecular Cell Biology, 7, 359–371.

    Article  CAS  PubMed  Google Scholar 

  21. Yano, S., Shinohara, H., Herbst, R. S., Kuniyasu, H., Bucana, C. D., Ellis, L. M., et al. (2000). Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. American Journal of Pathology, 157, 1893–1903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stathopoulos, G. T., Zhu, Z., Everhart, M. B., Kalomenidis, I., Lawson, W. E., Bilaceroglu, S., et al. (2006). Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. American Journal of Respiratory Cell and Molecular Biology, 34, 142–150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Stathopoulos, G. T., Kollintza, A., Moschos, C., Psallidas, I., Sherrill, T. P., Pitsinos, E. N., et al. (2007). Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Research, 67, 9825–9834.

    Article  CAS  PubMed  Google Scholar 

  24. Miller, W. H., Jr., Schipper, H. M., Lee, J. S., Singer, J., & Waxman, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Research, 62, 3893–3903.

    CAS  PubMed  Google Scholar 

  25. Kapahi, P. (2000). Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. Journal of Biological Chemistry, 275, 36062–36066.

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi, T., Hideshima, T., Akiyama, M., Richardson, P., Schlossman, R. L., Chauhan, D., et al. (2002). Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Molecular Cancer Therapeutics, 1, 851–860.

    CAS  PubMed  Google Scholar 

  27. Psallidas, I., Karabela, S. P., Moschos, C., Sherrill, T. P., Kollintza, A., Magkouta, S., et al. (2010). Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Molecular Cancer, 9, 56.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sartori, S., Tassinari, D., Ceccotti, P., Tombesi, P., Nielsen, I., Trevisani, L., et al. (2004). Prospective randomized trial of intrapleural bleomycin versus interferon alfa-2b via ultrasound-guided small-bore chest tube in the palliative treatment of malignant pleural effusions. Journal of Clinical Oncology, 22, 1228–1233.

    Article  CAS  PubMed  Google Scholar 

  29. Linge, A., Meleady, P., Henry, M., Clynes, M., Kasper, M., & Barth, K. (2011). Bleomycin treatment of A549 human lung cancer cells results in association of MGr1-Ag and caveolin-1 in lipid rafts. International Journal of Biochemistry & Cell Biology, 43, 98–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81172227), Science and Technology Commission of Shanghai Municipality (No. 124119a5800) and Research Foundation of Shanghai Municipal Education Commission (No.12ZZ073).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Sheng Zang or Bing Li.

Additional information

She-Ling Xie and Meng-Hang Yang are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, SL., Yang, MH., Chen, K. et al. Efficacy of Arsenic Trioxide in the Treatment of Malignant Pleural Effusion Caused by Pleural Metastasis of Lung Cancer. Cell Biochem Biophys 71, 1325–1333 (2015). https://doi.org/10.1007/s12013-014-0352-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0352-3

Keywords

Navigation