Skip to main content
Log in

In Silico Analysis of FMR1 Gene Missense SNPs

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The FMR1 gene, a member of the fragile X-related gene family, is responsible for fragile X syndrome (FXS). Missense single-nucleotide polymorphisms (SNPs) are responsible for many complex diseases. The effect of FMR1 gene missense SNPs is unknown. The aim of this study, using in silico techniques, was to analyze all known missense mutations that can affect the functionality of the FMR1 gene, leading to mental retardation (MR) and FXS. Data on the human FMR1 gene were collected from the Ensembl database (release 81), National Centre for Biological Information dbSNP Short Genetic Variations database, 1000 Genomes Browser, and NHLBI Exome Sequencing Project Exome Variant Server. In silico analysis was then performed. One hundred-twenty different missense SNPs of the FMR1 gene were determined. Of these, 11.66 % of the FMR1 gene missense SNPs were in highly conserved domains, and 83.33 % were in domains with high variety. The results of the in silico prediction analysis showed that 31.66 % of the FMR1 gene SNPs were disease related and that 50 % of SNPs had a pathogenic effect. The results of the structural and functional analysis revealed that although the R138Q mutation did not seem to have a damaging effect on the protein, the G266E and I304N SNPs appeared to disturb the interaction between the domains and affect the function of the protein. This is the first study to analyze all missense SNPs of the FMR1 gene. The results indicate the applicability of a bioinformatics approach to FXS and other FMR1-related diseases. I think that the analysis of FMR1 gene missense SNPs using bioinformatics methods would help diagnosis of FXS and other FMR1-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, E., & Joseph, S. (2015). Fragile X mental retardation protein: a paradigm for translational control by RNA-binding proteins. Biochimie, 114, 147–154.

    Article  CAS  PubMed  Google Scholar 

  2. Laggerbauer, B., Ostareck, D., Keidel, E. M., Ostareck-Lederer, A., & Fischer, U. (2001). Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet., 10(4), 329–338.

    Article  CAS  PubMed  Google Scholar 

  3. Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., et al. (2004). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci., 7(2), 113–117.

    Article  CAS  PubMed  Google Scholar 

  4. Hinds, H. L., Ashley, C. T., Sutcliffe, J. S., Nelson, D. L., Warren, S. T., Housman, D. E., & Schalling, M. (1993). Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat. Genet., 3, 36–43.

    Article  CAS  PubMed  Google Scholar 

  5. Ascano, M., Mukherjee, N., Bandaru, P., Miller, J. B., Nusbaum, J. D., Corcoran, D. L., et al. (2012). FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature, 492, 382–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou, H., Mangelsdorf, M., Liu, J., Zhu, L., & Wu, J. Y. (2014). RNA-binding proteins in neurological diseases. Sci China Life Sci, 57(4), 432–444.

    Article  CAS  PubMed  Google Scholar 

  7. Darnell, J. C., & Richter, J. D. (2012). Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb. Perspect. Biol., 4(8), 012344.

    Article  Google Scholar 

  8. Bhakar, A. L., Dolen, G., & Bear, M. F. (2012). The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci., 35, 417–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valverde, R., Pozdnyakova, I., Kajander, T., Venkatraman, J., & Regan, L. (2007). Fragile X mental retardation syndrome: structure of the KH1-KH2 domains of fragile X mental retardation protein. Structure, 15(9), 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  10. Tural, S., Tekcan, A., Kara, N., Elbistan, M., Güven, D., & Ali Tasdemir, H. (2015). FMR1 gene mutation screening by TP-PCR in patients with premature ovarian failure and fragile-X. Gynecol. Endocrinol., 31(3), 191–195.

    Article  CAS  PubMed  Google Scholar 

  11. Greco, C. M., Berman, R. F., Martin, R. M., Tassone, F., Schwartz, P. H., Chang, A., et al. (2006). Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain, 129, 243–255.

    Article  CAS  PubMed  Google Scholar 

  12. Luo, S., Huang, W., Xia, Q., Du, Q., Wu, L., & Duan, R. (2015). Mutational analyses of the FMR1 gene in Chinese pediatric population of fragile x suspects: low tolerance forpoint mutation. J. Child Neurol., 30(6), 803–806.

    Article  CAS  PubMed  Google Scholar 

  13. Handt, M., Epplen, A., Hoffjan, S., Mese, K., Epplen, J. T., & Dekomien, G. (2014). Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening. Mol. Cell. Probes, 28(5–6), 279–283.

    Article  CAS  PubMed  Google Scholar 

  14. Myrick, L. K., Nakamoto-Kinoshita, M., Lindor, N. M., Kirmani, S., Cheng, X., & Warren, S. T. (2014). Fragile X syndrome due to a missense mutation. Eur. J. Hum. Genet., 22(10), 1185–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, T., Bray, S. M., & Warren, S. T. (2012). New perspectives on the biology of fragile X syndrome. Curr. Opin. Genet. Dev., 22(3), 256–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Myrick, L. K., Deng, P. Y., Hashimoto, H., Oh, Y. M., Cho, Y., Poidevin, M. J., et al. (2015). Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Proc Natl Acad Sci USA, 112(4), 949–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cunningham, F., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., et al. (2015). Ensembl 2015. Nucleic Acids Res, 43((Database issue)), 662–669.

    Article  Google Scholar 

  18. Yilmaz, A. (2014). Bioinformatic Analysis of GJB2 Gene Missense Mutations. Cell Biochem. Biophys., 71, 1623–1642.

    Article  Google Scholar 

  19. Cardona, F., Tormos-Pérez, M., & Pérez-Tur, J. (2014). Structural and functional in silico analysis of LRRK2 missense substitutions. Mol. Biol. Rep., 41(4), 2529–2542.

    Article  CAS  PubMed  Google Scholar 

  20. Divanshu, G., Lekshmi, M., & Shanthi, V. (2014). In silico studies of deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of NRL gene. Netw. Model. Anal. Health Inform. Bioinform., 3(59), 1–7.

    Google Scholar 

  21. Doss, C. G., Chakraborty, C., Chen, L., & Zhu, H. (2014). Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective. Biomed. Res. Int., 19(13), 1–14.

    Article  Google Scholar 

  22. Li, B., Seligman, C., Thusberg, J., Miller, J. L., Auer, J., Whirl-Carrillo, M., et al. (2014). In silico comparative characterization of pharmacogenomic missense variants. BMC Genom. Suppl., 4, 4.

    Google Scholar 

  23. Raza, S. I., Muhammad, D., Jan, A., Ali, R. H., Hassan, M., Ahmad, W., & Rashid, S. (2014). In silico analysis of missense mutations in LPAR6 reveals abnormal phospholipid signaling pathway leading to hypotrichosis. PLoS One, 9(8), 104756.

    Article  Google Scholar 

  24. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29(1), 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 1000 Genomes Project Consortium, Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., et al. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56–65.

    Article  Google Scholar 

  26. http://evs.gs.washington.edu/EVS/.

  27. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):204-12.

  28. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic Acids Res., 28(1), 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montague, E., Stanberry, L., Higdon, R., Janko, I., Lee, E., Anderson, N., et al. (2014). MOPED 2.5–an integrated multi-omics resource: multi-omics profiling expression database now includes transcriptomics data. OMICS, 18(6), 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. http://web.expasy.org/blast/.

  31. Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., et al. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 40(Web Server issue), 597–603.

    Article  Google Scholar 

  32. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  33. Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: T-COFFEE: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol., 302(1), 205–217.

    Article  CAS  PubMed  Google Scholar 

  34. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32(5), 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome Res., 14(6), 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., et al. (2014). Pfam: the protein families database. Nucleic Acids Res, 42(Database issue), 222–230.

    Article  Google Scholar 

  37. Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., et al. (2013). ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr. J. Chem., 53, 199–206.

    Article  CAS  Google Scholar 

  38. Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 372(3), 774–797.

    Article  CAS  PubMed  Google Scholar 

  39. http://www.jmol.org/.

  40. Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4(7), 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  41. Mi, H., Lazareva-Ulitsky, B., Loo, R., Kejariwal, A., Vandergriff, J., Rabkin, S., et al. (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res, 33(Database issue), 284–288.

    Google Scholar 

  42. Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: server and survey. Nucleic Acids Res., 30(17), 3894–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22), 2729–2734.

    Article  CAS  PubMed  Google Scholar 

  44. Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins., 30(8), 1237–1244.

    CAS  Google Scholar 

  45. Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K., & Sarai, A. (2004). ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res, 32(Database issue), 120–121.

    Article  Google Scholar 

  46. Venselaar, H., Te, Beek T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform., 11, 548.

    Article  Google Scholar 

  47. Kaufmann, W. E., Cohen, S., Sun, H. T., & Ho, G. (2002). Molecular phenotype of fragile X syndrome: FMRP, FXRPs, and protein targets. Microsc Res Tech., 57(3), 135–144.

    Article  CAS  PubMed  Google Scholar 

  48. Kazdoba, T. M., Leach, P. T., Silverman, J. L., & Crawley, J. N. (2014). Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res., 3(4), 118–133.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lozano, R., Rosero, C. A., & Hagerman, R. J. (2014). Fragile X spectrum disorders. Intractable Rare Dis. Res., 3(4), 134–146.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rosti, R. O., Sadek, A. A., Vaux, K. K., & Gleeson, J. G. (2014). The genetic landscape of autism spectrum disorders. Dev. Med. Child Neurol., 56(1), 12–18.

    Article  PubMed  Google Scholar 

  51. Kumar, A., Rajendran, V., Sethumadhavan, R., Shukla, P., Tiwari, S., & Purohit, R. (2014). Computational SNP analysis: current approaches and future prospects. Cell Biochem. Biophys., 68(2), 233–239.

    Article  CAS  PubMed  Google Scholar 

  52. Henrick, K., & Thornton, J. (1998). PQS: a protein quaternary structure file server. Trends Biochem. Sci., 23, 358–361.

    Article  CAS  PubMed  Google Scholar 

  53. Ramos, A., Hollingworth, D., Adinolfi, S., Castets, M., Kelly, G., Frenkiel, T. A., et al. (2006). The structure of the N-terminal domain of the fragile X mental retardation protein: a platform for protein-protein interaction. Structure, 14(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  54. Kumar, M. D., Bava, K. A., Gromiha, M. M., Prabakaran, P., Kitajima, K., Uedaira, H., & Sarai, A. (2006). ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res., 1(34), 204–206.

    Article  Google Scholar 

  55. Marino, D., Achsel, T., Lacoux, C., Falconi, M., & Bagni, C. (2014). Molecular dynamics simulations show how the FMRP Ile304Asn mutation destabilizes the KH2 domain structure and affects its function. J. Biomol. Struct. Dyn., 32(3), 337–350.

    Article  PubMed  Google Scholar 

  56. Collins, S. C., Bray, S. M., Suhl, J. A., Cutler, D. J., Coffee, B., Zwick, M. E., & Wrren, S. T. (2010). Identification of novel FMR1 variants by massively parallel sequencing in developmentally delayed males. Am. J. Med. Genet. A, 152, 2512–2520.

    Article  Google Scholar 

  57. Abekhoukh, S., & Bardoni, B. (2014). CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front. Cell. Neurosci., 8, 81.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akin Tekcan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekcan, A. In Silico Analysis of FMR1 Gene Missense SNPs. Cell Biochem Biophys 74, 109–127 (2016). https://doi.org/10.1007/s12013-016-0722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0722-0

Keywords

Navigation