Skip to main content
Log in

The regulatory role of stromal microenvironments in fetal hematopoietic ontogeny

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Fetal hematopoietic development occurs through the successive expansion and differentiation of hematopoietic stem cells in distinct anatomic sites. The temporal pattern of fetal hematopoietic ontogeny suggests a coordinated developmental sequence whereby the preceding organ sustains the basic, immediate hematopoietic needs of the embryo allowing time for the development of niches within the subsequent organ with more complex supportive functions. We examine the hypothesis that there is a period of stromal genesis and circulating mesenchymal precursor cells, which gives rise to specialized niches within each of the definitive fetal hematopoietic organs, and these niches regulate hematopoietic stem cells fate determination. This article reviews fetal hematopoietic and stromal development and the current understanding of the development, composition, and regulation of the fetal stem cell niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schofield R. Biomed Pharmacother 1983;37:375–380.

    PubMed  CAS  Google Scholar 

  2. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Nature 2004;432:625–630.

    Article  PubMed  CAS  Google Scholar 

  3. Ferkowicz MJ, Starr M, Xie X, et al. Development 2003;130:4393–4403.

    Article  PubMed  CAS  Google Scholar 

  4. Mikkola HK, Fujiwara Y, Schlaeger TM, Traver D, Orkin SH. Blood 2003;101:508–516.

    Article  PubMed  CAS  Google Scholar 

  5. Li W, Ferkowicz MJ, Johnson SA, Shelley WC, Yoder MC. Stem Cells Dev 2005;14:44–54.

    Article  PubMed  Google Scholar 

  6. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Immunity 1994;1:291–301.

    Article  Google Scholar 

  7. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Transplantation 1974;17:331–340.

    Article  PubMed  CAS  Google Scholar 

  8. Tavassoli M, Friedenstein A. Am J Hematol 1983;15:195–203.

    Article  PubMed  CAS  Google Scholar 

  9. Wolf NS, Bertoncello I, Jiang D, Priestley G. Exp Hematol 1995;23:142–146.

    PubMed  CAS  Google Scholar 

  10. Mendes SC, Robin C, Dzierzak E. Development 2005;132:1127–1136.

    Article  PubMed  CAS  Google Scholar 

  11. Li CD, Zhang WY, Li HL, et al. Cell Res 2005;15:539–547.

    Article  PubMed  CAS  Google Scholar 

  12. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Blood 2001;98:2396–2402.

    Article  PubMed  CAS  Google Scholar 

  13. Wang X, Hisha H, Taketani S, et al. Stem Cells 2005;23:1389–1399.

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez M, Simon V, Herrera G, Cao C, Del Favero H, Minguell JJ. Bone Marrow Transplant 1997;20:265–271.

    Article  PubMed  CAS  Google Scholar 

  15. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al. Arthritis Res 2000;2:477–488.

    Article  PubMed  CAS  Google Scholar 

  16. Erices A, Conget P, Minguell JJ. Br J Haematol 2000;109:235–242.

    Article  PubMed  CAS  Google Scholar 

  17. Romanov YA, Svintsitskaya VA, Smirnov VN. Stem Cells 2003;21:105–110.

    Article  PubMed  Google Scholar 

  18. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Proc Natl Acad Sci USA 1996;93:705–708.

    Article  PubMed  CAS  Google Scholar 

  19. Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. JAMA 2004;292:75–80.

    Article  PubMed  CAS  Google Scholar 

  20. Khosrotehrani K, Bianchi DW. J Cell Sci 2005;118:1559–1563.

    Article  PubMed  CAS  Google Scholar 

  21. O’Donoghue K, Choolani M, Chan J, et al. Mol Hum Reprod 2003;9:497–502.

    Article  PubMed  CAS  Google Scholar 

  22. Bayes-Genis A, Bellosillo B, de la Calle O, et al. J Heart Lung Transplant 2005;24:2179–2183.

    Article  PubMed  Google Scholar 

  23. O’Donoghue K, Chan J, de la Fuente J, et al. Lancet 2004;364:179–182.

    Article  PubMed  Google Scholar 

  24. Moore MA, Metcalf D. Br J Haematol 1970;18:279–296.

    PubMed  CAS  Google Scholar 

  25. Chen U, Kosco M, Staerz U. Proc Natl Acad Sci USA 1992;89:2541–2545.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuoka S, Tsuji K, Hisakawa H, et al. Blood 2001;98:6–12.

    Article  PubMed  CAS  Google Scholar 

  27. Yoder MC, Papaioannou VE, Breitfeld PP, Williams DA. Blood 1994;83:2436–2443.

    Google Scholar 

  28. Kumano K, Chiba S, Kunisato A, et al. Immunity 2003;18:699–711.

    Article  PubMed  CAS  Google Scholar 

  29. Dando JS, Tavian M, Catelain C, et al. Stem Cells 2005;23:550–560.

    Article  PubMed  CAS  Google Scholar 

  30. Marshall CJ, Moore RL, Thorogood P, Brickell PM, Kinnon C, Thrasher AJ. Dev Dyn 1999;215:139–147.

    Article  PubMed  CAS  Google Scholar 

  31. Marshall CJ, Kinnon C, Thrasher AJ. Blood 2000;96:1591–1593.

    PubMed  CAS  Google Scholar 

  32. Tavian M, Hallais MF, Peault B. Development 1999;126:793–803.

    PubMed  CAS  Google Scholar 

  33. Cortes F, Deschaseaux F, Uchida N, et al. Blood 1999;93:826–837.

    PubMed  CAS  Google Scholar 

  34. Tavian M, Peault B. Exp Hematol 2005;33:1062–1069.

    Article  PubMed  Google Scholar 

  35. Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lievre F, Peault B. Blood 1996;87:67–72.

    PubMed  CAS  Google Scholar 

  36. Takeuchi M, Sekiguchi T, Hara T, Kinoshita T, Miyajima A. Blood 2002;99:1190–1196.

    Article  PubMed  CAS  Google Scholar 

  37. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. Dev Cell 2005;8:365–375.

    Article  PubMed  CAS  Google Scholar 

  38. Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F. Exp Hematol 2005;33:1048–1054.

    Article  PubMed  CAS  Google Scholar 

  39. Ottersbach K, Dzierzak E. Dev Cell 2005;8:377–387.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y, Li C, Jiang X, et al. Exp Hematol 2004;32:657–664.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, Mao N. Chin Med J (Engl) 2004;117:882–887.

    CAS  Google Scholar 

  42. Kumaravelu P, Hook L, Morrison AM, et al. Development 2002;129:4891–4899.

    PubMed  CAS  Google Scholar 

  43. Hackney JA, Charbord P, Brunk BP, Stoeckert CJ, Lemischka IR, Moore KA. Proc Natl Acad Sci USA 2002;99:13,061–13,066.

    Article  CAS  Google Scholar 

  44. Chagraoui J, Lepage-Noll A, Anjo A, Uzan G, Charbord P. Blood 2003;101:2973–2982.

    Article  PubMed  CAS  Google Scholar 

  45. Charbord P, Moore K. Ann N Y Acad Sci 2005;1044:159–167.

    Article  PubMed  CAS  Google Scholar 

  46. Blazsek I, Chagraoui J, Peault B. Blood 2000;96:3763–3771.

    PubMed  CAS  Google Scholar 

  47. Charbord P, Tavian M, Humeau L, Peault B. Blood 1996;87:4109–4119.

    PubMed  CAS  Google Scholar 

  48. Zhang J, Niu C, Ye L, et al. Nature 2003;425:836–841.

    Article  PubMed  CAS  Google Scholar 

  49. Calvi LM, Adams GB, Weibrecht KW, et al. Nature 2003;425:841–846.

    Article  PubMed  CAS  Google Scholar 

  50. Moore KA, Lemischka IR. Cell 2004;118:139–140.

    Article  PubMed  CAS  Google Scholar 

  51. Izumi-Hisha H, Than S, Ogata H, Inaba M, Ikehara S, Kawai M. Hybridoma 1991;10:103–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Flake MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badillo, A.T., Flake, A.W. The regulatory role of stromal microenvironments in fetal hematopoietic ontogeny. Stem Cell Rev 2, 241–246 (2006). https://doi.org/10.1007/s12015-006-0052-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-006-0052-5

Index Entries

Navigation