Skip to main content

Advertisement

Log in

Cord Blood Stem Cells for Hematopoietic Transplantation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cord blood (CB) is an important alternative source of hematopoietic stem cells (HSCs) for transplantation today. The principal drawbacks of cord blood transplantation are the limited number of hematopoietic stem cells and a long time to engraftment. Several promising approaches for engraftment enhancement are under intensive investigation. Such are transplantation with two cord blood units, co transplantation of cord blood and haploidentical HSCs and different methods for expansion of cord blood hematopoietic stem cells. In addition there are several ways for improving of homing of HSCs such as co- infusion of CB hematopoietic stem cells and mesenchymal stem cells, administration of parathyroid hormone (PTH), intra- bone transplantation and targeting the CXCR4/SDF1 system. These strategies are expected to increase the availability of transplantation to adults, for whom the chance to find a cord blood suitable for a single unit transplant is small. Recent advances in elucidation of the molecular mechanisms responsible for the proliferation and self-renewal of hematopoietic stem cells may bring further improvement of the outcomes of cord blood transplantation. This review summarizes the recent progress in the field of cord blood derived hematopoietic stem cells. It presents the strategies applied and points out directions for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gluckman, E., Broxmeyer, H. A., Auerbach, A. D., et al. (1989). Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. The New England Journal of Medicine, 321, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  2. Holyoake, T. L., Nicolini, F. E., & Eaves, C. J. (1999). Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Experimental Hematology, 27, 1418–1427.

    Article  PubMed  CAS  Google Scholar 

  3. Hows, J. M., Bradley, B. A., Marsh, J. C., et al. (1992). Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet, 340, 73–76.

    Article  PubMed  CAS  Google Scholar 

  4. Schuller, C. E., Jankowski, K., & Mackenzie, K. L. (2007). Telomere length of cord blood-derived CD34(+) progenitors predicts erythroid proliferative potential. Leukemia, 21, 983–991.

    PubMed  CAS  Google Scholar 

  5. Gammaitoni, L., Weisel, K. C., Gunetti, M., et al. (2004). Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood, 103, 4440–4448.

    Article  PubMed  CAS  Google Scholar 

  6. Lu, L., Xiao, M., Shen, R. N., Grigsby, S., & Broxmeyer, H. E. (1993). Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood, 81, 41–48.

    PubMed  CAS  Google Scholar 

  7. Tanavde, V. M., Malehorn, M. T., Lumkul, R., et al. (2002). Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Experimental Hematology, 30, 816–823.

    Article  PubMed  CAS  Google Scholar 

  8. Piacibello, W., Sanavio, F., Severino, A., et al. (1999). Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood, 93, 3736–3749.

    PubMed  CAS  Google Scholar 

  9. Rubinstein, P., Carrier, C., Scaradavou, A., et al. (1998). Outcomes among 562 recipients of placental-blood transplants from unrelated donors. The New England Journal of Medicine, 339, 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  10. Gluckman, E., Rocha, V., Boyer-Chammard, A., et al. (1997). Outcome of cord-blood transplantation from related and unrelated donors. Eurocord transplant group and the European blood and marrow transplantation group. The New England Journal of Medicine, 337, 373–381.

    Article  PubMed  CAS  Google Scholar 

  11. Nitsche, A., Zhang, M., Clauss, T., Siegert, W., Brune, K., & Pahl, A. (2007). Cytokine profiles of cord and adult blood leukocytes: differences in expression are due to differences in expression and activation of transcription factors. BMC Immunology, 8, 18.

    Article  PubMed  CAS  Google Scholar 

  12. Garderet, L., Dulphy, N., Douay, C., et al. (1998). The umbilical cord blood alphabeta T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood, 91, 340–346.

    PubMed  CAS  Google Scholar 

  13. Mohty, M., & Gaugler, B. (2008). Inflammatory cytokines and dendritic cells in acute graft-versus-host disease after allogeneic stem cell transplantation. Cytokine & Growth Factor Reviews, 19, 53–63.

    Article  CAS  Google Scholar 

  14. Dalle, J. H., Menezes, J., Wagner, E., et al. (2005). Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatric Research, 57, 649–655.

    Article  PubMed  CAS  Google Scholar 

  15. Verneris, M. R., & Miller, J. S. (2009). The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. British Journal Haematology, 147, 185–191.

    Article  CAS  Google Scholar 

  16. Sullivan, M. J. (2008). Banking on cord blood stem cells. Nature Reviews. Cancer, 8, 555–563.

    Article  PubMed  CAS  Google Scholar 

  17. Rocha, V., & Gluckman, E. (2009). Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. British Journal Haematology, 147, 262–274.

    Article  CAS  Google Scholar 

  18. Smith, A. R., & Wagner, J. E. (2009). Alternative haematopoietic stem cell sources for transplantation: place of umbilical cord blood. British Journal Haematology, 147, 246–261.

    Article  Google Scholar 

  19. Wagner, J. E., Barker, J. N., DeFor, T. E., et al. (2002). Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood, 100, 1611–1618.

    PubMed  CAS  Google Scholar 

  20. Sanz, Jm, Saavedra, S., Montesinos, P., et al. (2008). Unrelated Donor Umbilical Cord Blood Transplantation (UD-UCBT) for adult aatients with high-risk Acute Myeloid Leukemia (AML). ASH Annual Meeting Abstracts, 112, 4401.

    Google Scholar 

  21. Rocha, V., Labopin, M., Sanz, G., et al. (2004). Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. The New England Journal of Medicine, 351, 2276–2285.

    Article  PubMed  CAS  Google Scholar 

  22. Laughlin, M. J., Eapen, M., Rubinstein, P., et al. (2004). Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. The New England Journal of Medicine, 351, 2265–2275.

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi, S., Iseki, T., Ooi, J., et al. (2004). Single-institute comparative analysis of unrelated bone marrow transplantation and cord blood transplantation for adult patients with hematologic malignancies. Blood, 104, 3813–3820.

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi, S., Ooi, J., Tomonari, A., et al. (2007). Comparative single-institute analysis of cord blood transplantation from unrelated donors with bone marrow or peripheral blood stem-cell transplants from related donors in adult patients with hematologic malignancies after myeloablative conditioning regimen. Blood, 109, 1322–1330.

    Article  PubMed  CAS  Google Scholar 

  25. Rocha, V., Eapen, M., Scaradavou, E., Gluckman, E., Laughlin, M., Stevens, M. M., et al. (2009). Effect of stem cell source on transplant outcome in adults with acute leukaemia: a comparison between unrelated bone marrow, peripheral blood and cord bloodblood. Bone Marrow Transplantation, 43, S5.

    Google Scholar 

  26. Eapen, M., Rubinstein, P., Zhang, M. J., et al. (2007). Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet, 369, 1947–1954.

    Article  PubMed  Google Scholar 

  27. Barker, J. N., Weisdorf, D. J., DeFor, T. E., et al. (2005). Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood, 105, 1343–1347.

    Article  PubMed  CAS  Google Scholar 

  28. Tse, W., Bunting, K. D., & Laughlin, M. J. (2008). New insights into cord blood stem cell transplantation. Current Opinion in Hematology, 15, 279–284.

    Article  PubMed  Google Scholar 

  29. Delaney, C., Gutman, J. A., & Appelbaum, F. R. (2009). Cord blood transplantation for haematological malignancies: conditioning regimens, double cord transplant and infectious complications. British Journal Haematology, 147, 207–216.

    Article  CAS  Google Scholar 

  30. Verneris, M. R., Brunstein, C., DeFor, T. E., et al. (2005). Risk of Relapse (REL) after Umbilical Cord Blood Transplantation (UCBT) in Patients with acute leukemia: marked reduction in recipients of two units. ASH Annual Meeting Abstracts, 106, 305.

    Google Scholar 

  31. Verneris, M. R., Brunstein, C. G., Barker, J., et al. (2009). Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood, 114, 4293–4299.

    Article  PubMed  CAS  Google Scholar 

  32. Willemze, R., Rodrigues, C. A., Labopin, M., et al. (2009). KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia, 23, 492–500.

    Article  PubMed  CAS  Google Scholar 

  33. Lister, J., Gryn, J. F., McQueen, K. L., Harris, D. T., Rossetti, J. M., & Shadduck, R. K. (2007). Multiple unit HLA-unmatched sex-mismatched umbilical cord blood transplantation for advanced hematological malignancy. Stem Cells and Development, 16, 177–186.

    Article  PubMed  CAS  Google Scholar 

  34. Magro, E., Regidor, C., Cabrera, R., et al. (2006). Early hematopoietic recovery after single unit unrelated cord blood transplantation in adults supported by co-infusion of mobilized stem cells from a third party donor. Haematologica, 91, 640–648.

    PubMed  Google Scholar 

  35. van de Ven, C., Ishizawa, L., Law, P., & Cairo, M. S. (1995). IL-11 in combination with SLF and G-CSF or GM-CSF significantly increases expansion of isolated CD34+ cell population from cord blood vs. adult bone marrow. Experimental Hematology, 23, 1289–1295.

    PubMed  Google Scholar 

  36. Vormoor, J., Lapidot, T., Pflumio, F., et al. (1994). Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood, 83, 2489–2497.

    PubMed  CAS  Google Scholar 

  37. Shpall, E. J., Quinones, R., Giller, R., et al. (2002). Transplantation of ex vivo expanded cord blood. Biology of Blood and Marrow Transplantation, 8, 368–376.

    Article  PubMed  Google Scholar 

  38. McNiece, I., Jones, R., Bearman, S. I., et al. (2000). Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer. Blood, 96, 3001–3007.

    PubMed  CAS  Google Scholar 

  39. De Lima, M., McMannis, J. D., Saliba, R., et al. (2008). Double Cord Blood Transplantation (CBT) with and without Ex-Vivo Expansion (EXP): a randomized. Controlled study. ASH Annual Meeting Abstracts, 112, 154.

    Google Scholar 

  40. Glimm, H., Oh, I. H., & Eaves, C. J. (2000). Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood, 96, 4185–4193.

    PubMed  CAS  Google Scholar 

  41. Ramirez, M., Segovia, J. C., Benet, I., et al. (2001). Ex vivo expansion of umbilical cord blood (UCB) CD34(+) cells alters the expression and function of alpha 4 beta 1 and alpha 5 beta 1 integrins. British Journal Haematology, 115, 213–221.

    Article  CAS  Google Scholar 

  42. Zhai, Q. L., Qiu, L. G., Li, Q., et al. (2004). Short-term ex vivo expansion sustains the homing-related properties of umbilical cord blood hematopoietic stem and progenitor cells. Haematologica, 89, 265–273.

    PubMed  CAS  Google Scholar 

  43. Domen, J., Cheshier, S. H., & Weissman, I. L. (2000). The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. The Journal of Experimental Medicine, 191, 253–264.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, B., Buckley, S. M., Lewis, I. D., Goldman, A. I., Wagner, J. E., & van der Loo, J. C. (2003). Homing defect of cultured human hematopoietic cells in the NOD/SCID mouse is mediated by Fas/CD95. Experimental Hematology, 31, 824–832.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, L. S., Liu, H. J., Xia, Z. B., Broxmeyer, H. E., & Lu, L. (2000). Expression and activation of caspase-3/CPP32 in CD34(+) cord blood cells is linked to apoptosis after growth factor withdrawal. Experimental Hematology, 28, 907–915.

    Article  PubMed  CAS  Google Scholar 

  46. Holyoake, T. L., Alcorn, M. J., Richmond, L., et al. (1997). CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplantation, 19, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  47. Pecora, A. L., Stiff, P., Jennis, A., et al. (2000). Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplantation, 25, 797–799.

    Article  PubMed  CAS  Google Scholar 

  48. Gallacher, L., Murdoch, B., Wu, D. M., Karanu, F. N., Keeney, M., & Bhatia, M. (2000). Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood, 95, 2813–2820.

    PubMed  CAS  Google Scholar 

  49. Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.

    PubMed  CAS  Google Scholar 

  50. Bonanno, G., Perillo, A., Rutella, S., et al. (2004). Clinical isolation and functional characterization of cord blood CD133+ hematopoietic progenitor cells. Transfusion, 44, 1087–1097.

    Article  PubMed  Google Scholar 

  51. Peled, T., Landau, E., Mandel, J., et al. (2004). Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Experimental Hematology, 32, 547–555.

    Article  PubMed  CAS  Google Scholar 

  52. de Lima, M., McMannis, J., Gee, A., et al. (2008). Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplantation, 41, 771–778.

    Article  PubMed  CAS  Google Scholar 

  53. Bug, G., Gul, H., Schwarz, K., et al. (2005). Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Research, 65, 2537–2541.

    Article  PubMed  CAS  Google Scholar 

  54. Hofmeister, C. C., Zhang, J., Knight, K. L., Le, P., & Stiff, P. J. (2007). Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplantation, 39, 11–23.

    Article  PubMed  CAS  Google Scholar 

  55. Delaney, C., Heimfeld, S., Brashem-Stein, C., Voorhies, H. Manger, RL., Bernstein, ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med, 16:232-6.

  56. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    PubMed  CAS  Google Scholar 

  57. Verfaillie, C. M. (2002). Hematopoietic stem cells for transplantation. Nature Immunology, 3, 314–317.

    Article  PubMed  CAS  Google Scholar 

  58. Fu, Y. S., Cheng, Y. C., Lin, M. Y., et al. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells, 24, 115–124.

    Article  PubMed  Google Scholar 

  59. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.

    Article  PubMed  Google Scholar 

  60. Bakhshi, T., Zabriskie, R. C., Bodie, S., et al. (2008). Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion, 48, 2638–2644.

    Article  PubMed  Google Scholar 

  61. Robinson, S. N., Ng, J., Niu, T., et al. (2006). Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplantation, 37, 359–366.

    Article  PubMed  CAS  Google Scholar 

  62. McNiece, I., Harrington, J., Turney, J., Kellner, J., & Shpall, E. J. (2004). Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy, 6, 311–317.

    Article  PubMed  CAS  Google Scholar 

  63. Ning, H., Yang, F., Jiang, M., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia, 22, 593–599.

    Article  PubMed  CAS  Google Scholar 

  64. Ball, L. M., Bernardo, M. E., Roelofs, H., et al. (2007). Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood, 110, 2764–2767.

    Article  PubMed  CAS  Google Scholar 

  65. Macmillan, M. L., Blazar, B. R., DeFor, T. E., & Wagner, J. E. (2009). Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplantation, 43, 447–454.

    Article  PubMed  CAS  Google Scholar 

  66. Gonzalo-Daganzo, R., Regidor, C., Martin-Donaire, T., et al. (2009). Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy, 11, 278–288.

    Article  PubMed  CAS  Google Scholar 

  67. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.

    Article  PubMed  CAS  Google Scholar 

  68. Noel, D., Djouad, F., Bouffi, C., Mrugala, D., & Jorgensen, C. (2007). Multipotent mesenchymal stromal cells and immune tolerance. Leukaemia & Lymphoma, 48, 1283–1289.

    Article  CAS  Google Scholar 

  69. Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  70. von Bonin, M., Stolzel, F., Goedecke, A., et al. (2009). Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplantation, 43, 245–251.

    Article  CAS  Google Scholar 

  71. Resnick, I. B., Jr., Stepensky, P., Shapira, M. Y., et al. (2009). Treatment of severe acute graft-versus-host disease with mesenchymal stromal cells. ASH Annual Meeting Abstracts, 114, 2249.

    Google Scholar 

  72. Calvi, L. M., Adams, G. B., Weibrecht, K. W., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.

    Article  PubMed  CAS  Google Scholar 

  73. Ballen, K. K., Shpall, E. J., Avigan, D., et al. (2007). Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biology of Blood and Marrow Transplantation, 13, 838–843.

    Article  PubMed  CAS  Google Scholar 

  74. Frassoni, F. Intra-bone route of administration offers new perspectives for safer transplantation of hematopoietic stem cells. Cytotherapy, 12:5-6.

  75. Brunstein, C. G., Barker, J. N., Weisdorf, D. J., et al. (2009). Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplantation, 43, 935–940.

    Article  PubMed  CAS  Google Scholar 

  76. Kollet, O., Dar, A., & Lapidot, T. (2007). The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annual Review of Immunology, 25, 51–69.

    Article  PubMed  CAS  Google Scholar 

  77. Miyazaki, O., Nishimura, G., Okamoto, R., et al. (2009). Induction of systemic bone changes by preconditioning total body irradiation for bone marrow transplantation. Pediatric Radiology, 39, 23–29.

    Article  PubMed  Google Scholar 

  78. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicines, 10, 858–864.

    Article  CAS  Google Scholar 

  79. De Falco, E., Porcelli, D., Torella, A. R., et al. (2004). SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 104, 3472–3482.

    Article  PubMed  CAS  Google Scholar 

  80. Avigdor, A., Goichberg, P., Shivtiel, S., et al. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103, 2981–2989.

    Article  PubMed  CAS  Google Scholar 

  81. Reca, R., Mastellos, D., Majka, M., et al. (2003). Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood, 101, 3784–3793.

    Article  PubMed  CAS  Google Scholar 

  82. Wysoczynski, M., Reca, R., Ratajczak, J., et al. (2005). Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood, 105, 40–48.

    Article  PubMed  CAS  Google Scholar 

  83. Ratajczak, M. Z., Reca, R., Wysoczynski, M., et al. (2004). Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia, 18, 1482–1490.

    Article  PubMed  CAS  Google Scholar 

  84. Christopherson, K. W., Hangoc, G., & Broxmeyer, H. E. (2002). Cell Surface Peptidase CD26/Dipeptidylpeptidase IV Regulates CXCL12/Stromal Cell-Derived Factor-1α-Mediated Chemotaxis of Human Cord Blood CD34+ Progenitor Cells. Journal of Immunology, 169, 7000–7008.

    CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Prof. Essie Kariv for her generous help in preparing this manuscript.

Conflict of Interests

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Nagler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanevsky, A., Shimoni, A., Yerushalmi, R. et al. Cord Blood Stem Cells for Hematopoietic Transplantation. Stem Cell Rev and Rep 7, 425–433 (2011). https://doi.org/10.1007/s12015-010-9183-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9183-9

Keywords

Navigation