Skip to main content

Advertisement

Log in

Mesenchymal Stem Cells Stimulate Endogenous Neurogenesis in the Subventricular Zone of Adult Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mammalian neurogenesis has been demonstrated in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. However, the low rate and the restricted long term survival of newborn cells limit the restorative ability of this process. Adult bone marrow derived mesenchymal stem cells (MSCs) have been extensively studied due to their wide therapeutic potential. The aim of this study was to determine if MSC transplantation to the normally restrictive SVZ of mice housed in an enriched environment stimulates endogenous neurogenesis. In the presented study 30 C57BL/6 female mice were divided into 3 groups: standard environment injected with phosphate buffered saline (PBS) and enriched environment injected with either PBS or MSCs. Bromodeoxyuridine was injected for 6 days, and 3 weeks later the mice were sacrificed and the brain tissue analyzed immunohistochemically. PBS-treated mice housed in enriched cages showed augmented neurogenesis in the SGZ but not the SVZ. MSC transplantation was associated with increased proliferation and neuronal differentiation of neural progenitors within the SVZ and an increase in the proportion of the newborn neurons out of the total proliferating cells. Histological analysis confirmed the survival of a significant amount of the transplanted cells at least 3 weeks after transplantation, and the presence of brain-derived neurotrophic factor expression. To our knowledge, this is the first study to show that MSCs might interfere with the tight regulation of the SVZ, independent of the induced brain lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BMP:

bone morphogenic protein

BDNF:

brain-derived neurotrophic factor

BrdU:

bromodeoxyuridine

GFAP:

glial fibrillary acidic protein

MSCs:

mesenchymal stem cells

NeuN:

neuronal nuclei

PBS:

phosphate buffered saline

SGZ:

subgranular zone

SVZ:

subventricular zone

References

  1. Garcia-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & varez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: in search of the stem cells. Journal of Neurobiology, 36(2), 234–248.

    Article  PubMed  CAS  Google Scholar 

  2. Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.

    Article  PubMed  CAS  Google Scholar 

  3. Suh, H., Deng, W., & Gage, F. H. (2009). Signaling in adult neurogenesis. Annual Review of Cell and Developmental Biology, 25, 253–275.

    Article  PubMed  CAS  Google Scholar 

  4. Bordey, A. (2006). Adult neurogenesis: basic concepts of signaling. Cell Cycle, 5(7), 722–728.

    Article  PubMed  CAS  Google Scholar 

  5. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., & varez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703–716.

    Article  PubMed  CAS  Google Scholar 

  6. Morshead, C. M., Reynolds, B. A., Craig, C. G., McBurney, M. W., Staines, W. A., Morassutti, D., et al. (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5), 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  7. Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S., & varez-Buylla, A. (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. The Journal of Comparative Neurology, 478(4), 359–378.

    Article  PubMed  Google Scholar 

  8. Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060), 894–897.

    Article  PubMed  CAS  Google Scholar 

  9. Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M., & Cameron, H. A. (2003). Short-term and long-term survival of new neurons in the rat dentate gyrus. The Journal of Comparative Neurology, 460(4), 563–572.

    Article  PubMed  Google Scholar 

  10. Lie, D. C., Song, H., Colamarino, S. A., Ming, G. L., & Gage, F. H. (2004). Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annual Review of Pharmacology and Toxicology, 44, 399–421.

    Article  PubMed  CAS  Google Scholar 

  11. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624), 493–495.

    Article  PubMed  CAS  Google Scholar 

  12. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. The Journal of Neuroscience, 18(9), 3206–3212.

    PubMed  CAS  Google Scholar 

  13. Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52(2), 135–143.

    Article  PubMed  Google Scholar 

  14. Brown, J., Cooper-Kuhn, C. M., Kempermann, G., Van, P. H., Winkler, J., Gage, F. H., et al. (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. The European Journal of Neuroscience, 17(10), 2042–2046.

    Article  PubMed  Google Scholar 

  15. Ehninger, D., & Kempermann, G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cerebral Cortex, 13(8), 845–851.

    Article  PubMed  Google Scholar 

  16. van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1(3), 191–198.

    Article  PubMed  Google Scholar 

  17. Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews. Neuroscience, 7(9), 697–709.

    Article  PubMed  CAS  Google Scholar 

  18. Owen, M., & Friedenstein, A. J. (1988). Stromal stem cells: marrow-derived osteogenic precursors. Ciba Foundation Symposium, 136, 42–60.

    PubMed  CAS  Google Scholar 

  19. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276(5309), 71–74.

    Article  PubMed  CAS  Google Scholar 

  20. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  PubMed  CAS  Google Scholar 

  21. Zipori, D. (2004). Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells, Molecules & Diseases, 33(3), 211–215.

    Article  CAS  Google Scholar 

  22. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, R. H., Seo, M. J., Reger, R. L., Spees, J. L., Pulin, A. A., Olson, S. D., et al. (2006). Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. PNAS, 103(46), 17438–17443.

    Article  PubMed  CAS  Google Scholar 

  24. Rojas, M., Xu, J., Woods, C. R., Mora, A. L., Spears, W., Roman, J., et al. (2005). Bone marrow-derived mesenchymal stem cells in repair of the injured lung. American Journal of Respiratory Cell and Molecular Biology, 33(2), 145–152.

    Article  PubMed  CAS  Google Scholar 

  25. Le, B. K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.

    Article  Google Scholar 

  26. Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., et al. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32(4), 1005–1011.

    PubMed  CAS  Google Scholar 

  27. Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., et al. (2000). Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport, 11(13), 3001–3005.

    Article  PubMed  CAS  Google Scholar 

  28. Mahmood, A., Lu, D., Lu, M., & Chopp, M. (2003). Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 53(3), 697–702.

    Article  PubMed  Google Scholar 

  29. Kan, I., Melamed, E., & Offen, D. (2007). Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handbook of Experimental Pharmacology, 180, 219–242.

    Google Scholar 

  30. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25(11), 2896–2902.

    Article  PubMed  Google Scholar 

  31. Paxinos, G., & Franklin, K. B. J. (2004). The mouse brain in stereotaxic coordinates. San Diego: Academic.

    Google Scholar 

  32. Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9(2), 268–275.

    Article  PubMed  CAS  Google Scholar 

  33. Tremain, N., Korkko, J., Ibberson, D., Kopen, G. C., DiGirolamo, C., & Phinney, D. G. (2001). MicroSAGE analysis of 2, 353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells, 19(5), 408–418.

    Article  PubMed  CAS  Google Scholar 

  34. Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology, 59(4), 514–523.

    PubMed  CAS  Google Scholar 

  35. Chen, Q., Long, Y., Yuan, X., Zou, L., Sun, J., Chen, S., et al. (2005). Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. Journal of Neuroscience Research, 80(5), 611–619.

    Article  PubMed  CAS  Google Scholar 

  36. Crigler, L., Robey, R. C., Asawachaicharn, A., Gaupp, D., & Phinney, D. G. (2006). Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Experimental Neurology, 198(1), 54–64.

    Article  PubMed  CAS  Google Scholar 

  37. Mullen, R. J., Buck, C. R., & Smith, A. M. (1992). NeuN, a neuronal specific nuclear protein in vertebrates. Development, 116(1), 201–211.

    PubMed  CAS  Google Scholar 

  38. Yoo, S. W., Kim, S. S., Lee, S. Y., Lee, H. S., Kim, H. S., Lee, Y. D., et al. (2008). Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Experimental & Molecular Medicine, 40(4), 387–397.

    Article  CAS  Google Scholar 

  39. Cova, L., Armentero, M. T., Zennaro, E., Calzarossa, C., Bossolasco, P., Busca, G., et al. (2010). Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Research, 1311, 12–27.

    Article  PubMed  CAS  Google Scholar 

  40. Munoz, J. R., Stoutenger, B. R., Robinson, A. P., Spees, J. L., & Prockop, D. J. (2005). Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. PNAS, 102(50), 18171–18176.

    Article  PubMed  CAS  Google Scholar 

  41. Tfilin, M., Sudai, E., Merenlender, A., Gispan, I., Yadid, G., & Turgeman, G. (2009). Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Molecular Psychiatry. doi:10.1038/mp.2009.110.

    PubMed  Google Scholar 

  42. Lim, D. A., Tramontin, A. D., Trevejo, J. M., Herrera, D. G., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 28(3), 713–726.

    Article  PubMed  CAS  Google Scholar 

  43. Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and Cellular Neuroscience, 11(4), 234–245.

    Article  PubMed  CAS  Google Scholar 

  44. Pencea, V., Bingaman, K. D., Wiegand, S. J., & Luskin, M. B. (2001). Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. The Journal of Neuroscience, 21(17), 6706–6717.

    PubMed  CAS  Google Scholar 

  45. Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D., & Goldman, S. A. (2001). Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. The Journal of Neuroscience, 21(17), 6718–6731.

    PubMed  CAS  Google Scholar 

  46. Chmielnicki, E., Benraiss, A., Economides, A. N., & Goldman, S. A. (2004). Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. The Journal of Neuroscience, 24(9), 2133–2142.

    Article  PubMed  CAS  Google Scholar 

  47. Galvao, R. P., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2008). Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. The Journal of Neuroscience, 28(50), 13368–13383.

    Article  PubMed  CAS  Google Scholar 

  48. Xu, G., Zhang, L., Ren, G., Yuan, Z., Zhang, Y., Zhao, R. C., et al. (2007). Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Research, 17(3), 240–248.

    PubMed  CAS  Google Scholar 

  49. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371(9624), 1579–1586.

    Article  PubMed  Google Scholar 

  50. Burt, R. K., Loh, Y., Pearce, W., Beohar, N., Barr, W. G., Craig, R., et al. (2008). Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. Journal of the American Medical Association, 299(8), 925–936.

    Article  PubMed  CAS  Google Scholar 

  51. Parekkadan, B., Tilles, A. W., & Yarmush, M. L. (2008). Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independent of regulatory T cells. Stem Cells, 26(7), 1913–1919.

    Article  PubMed  Google Scholar 

  52. Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150.

    Article  PubMed  CAS  Google Scholar 

  53. Ryan, J., Barry, F., Murphy, J. M., & Mahon, B. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation. doi:10.1186/1476-9255-2-8.

  54. Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., et al. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Experimental Neurology, 195(1), 16–26.

    Article  PubMed  CAS  Google Scholar 

  55. Rossignol, J., Boyer, C., Thinard, R., Remy, S., Dugast, A. S., Dubayle, D., et al. (2009). Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. Journal of Cellular and Molecular Medicine, 13(8B), 2547–2558.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was performed in partial fulfillment of the requirements for a Ph.D. degree of I.K. The authors thank Dorit Trudler for her help with the cell quantifications. The authors gratefully acknowledge the Norma and Alan Aufzein Chair for Parkinson’s Disease Research and the Devora Eleonora Kirshman Fund for Research of Parkinson’s Disease, Tel Aviv University.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, I., Barhum, Y., Melamed, E. et al. Mesenchymal Stem Cells Stimulate Endogenous Neurogenesis in the Subventricular Zone of Adult Mice. Stem Cell Rev and Rep 7, 404–412 (2011). https://doi.org/10.1007/s12015-010-9190-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9190-x

Keywords

Navigation