Skip to main content
Log in

Dynamics of Bone Marrow VSELs and HSCs in Response to Treatment with Gonadotropin and Steroid Hormones, during Pregnancy and Evidence to Support Their Asymmetric/Symmetric Cell Divisions

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Gender plays an important role in the incidence of hematological malignancies and recently hematopoietic stem cells (HSCs) were found to proliferate more in females that gets further augmented during pregnancy. It was suggested that since basal numbers of HSCs remain the same in both sexes, possibly HSCs in females undergo increased self-renewal and apoptosis. Then how is self-renewal of stem cells regulated in males? More important, do HSCs undergo asymmetric cell divisions (ACD) or a more primitive population of pluripotent, very small embryonic-like stem cells (VSELs) undergo ACD to self-renew and specify into HSCs? Lot more clarity is required on the bone marrow stem cells biology. Present study was undertaken to evaluate whether similar dimorphism reported for HSCs also exists among VSELs. Bone marrow VSELs and HSCs were studied in bilaterally ovariectomized and castrated mice by flow cytometry after treating with gonadotropin (FSH) and sex steroid (estrogen & progesterone) hormones and during pregnancy. Differential expression of pluripotent (Oct-4A, Sox2, Nanog) and differentiation (Oct-4, Sca1, c-Kit, Ikaros) specific transcripts was studied. Basal BrdU uptake was more in both VSELs (p < 0.01) and HSCs (p < 0.05) in female bone marrow. FSH exerted a more profound effect compared to estradiol in both the sexes. Flow cytometry results showed ten-fold increase in spleen VSELs by mid-gestation associated with approximately two-fold increase in HSCs. These results point to a novel yet unreported role of spleen VSELs during pregnancy. Furthermore, VSELs underwent ACD to self-renew and give rise to slightly bigger HSCs based on unequal expression of NUMB, CD45 and OCT-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E2:

Estradiol beta

P:

Progesterone

FSH:

Follicle stimulating hormone

BrdU:

5-bromo-2-deoxyuridine

VSELs:

Very small embryonic-like stem cells

HSCs:

Hematopoietic stem cells

DAPI:

4’,6-diamidino-2-phenylindole

References

  1. Illing, A., Liu, P., Ostermay, S., Schilling, A., de Haan, G., Krust, A., et al. (2012). Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone. Haematologica, 97(8), 1131–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakada, D., Oguro, H., Levi, B. P., Ryan, N., Kitano, A., Saitoh, Y., et al. (2014). Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature, 505(7484), 555–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medina, K. L., Garrett, K. P., Thompson, L. F., Rossi, M. I., Payne, K. J., & Kincade, P. W. (2001). Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nature Immunology, 2(8), 718–724.

    Article  CAS  PubMed  Google Scholar 

  4. Carreras, E., Turner, S., Frank, M. B., Knowlton, N., Osban, J., Centola, M., et al. (2010). Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4. Blood, 15(2), 238–246.

    Article  Google Scholar 

  5. Oguro, H., & McDonald, J. G. (2017) 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI94027.

    PubMed  Google Scholar 

  6. Ratajczak, M. Z. (2017). Why are hematopoietic stem cells so ‘sexy’? On a search for developmental explanation. Leukemia, 31(8), 1671–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Virant-Klun, I. (2016). Very small embryonic-like stem cells: a potential developmental link between germinal lineage and hematopoiesis in humans. Stem Cells and Development, 25(2), 101–113.

    Article  CAS  PubMed  Google Scholar 

  8. Scaldaferri, M. L., Klinger, F. G., Farini, D., Carlo, D., Carsetti, A., Giorda, R. E. et al (2015). Hematopoietic activity in putative mouse primordial germ cell populations. Mechanics of Development, 136, 53–63.

    Article  CAS  Google Scholar 

  9. Mierzejewska, K., Borkowska, S., Suszynska, E., Adamiak, M., Ratajczak, J., Kucia, M., et al. (2015). Hematopoietic stem/progenitor cells express several functional sex hormone receptors-novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells and Development, 24(8), 927–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdelbaset-Ismail, A., Suszynska, M., Borkowska, S., Adamiak, M., Ratajczak, J., Kucia, M., et al. (2016). Human haematopoietic stem/progenitor cells express several functional sex hormone receptors. Journal of Cellular and Molecular Medicine, 20(1), 134–146.

    Article  CAS  PubMed  Google Scholar 

  11. Shaikh, A., Bhartiya, D., Kapoor, S., & Nimkar, H. (2016). Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells. Stem Cell Research and Therapy, 7(1), 59–73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zbucka-Kretowska, M., & Eljaszewicz, A. (2016). Effective mobilization of very small embryonic-like stem cells and hematopoietic stem/progenitor cells but not endothelial progenitor cells by follicle-stimulating hormone therapy. Stem Cells International. https://doi.org/10.1155/2016/8530207.

    PubMed  Google Scholar 

  13. Patel, H., Bhartiya, D., Parte, S., Gunjal, P., Yedurkar, S., & Bhatt, M. (2013). Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. Journal of Ovarian Research, 6, 52–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 23(11), 1493–1508.

    Article  CAS  PubMed  Google Scholar 

  15. Murke, F., Castro, S. V. C., Giebel, B., & Görgens, A. (2015). Concise review: Asymmetric cell divisions in stem cell biology. Symmetry, 7, 2025–2037.

    Article  Google Scholar 

  16. Ting, S. B., Deneault, E., Hope, K., Cellot, S., Chagraoui, J., Mayotte, N., et al. (2012). Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood, 119(11), 2510–2522.

    Article  CAS  PubMed  Google Scholar 

  17. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., & Shin, D. M. (2017). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 120, 166–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., et al. (2016). Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76.

    Article  PubMed  Google Scholar 

  19. Kucia, M., Campbell, Reca. R.. Zuba-Surma, F. R.. Majka, E., Ratajczak, M., J. et al (2006). A population of very small embryonic-like (VSEL) CXCR4 (+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.

  20. De Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., et al. (2015). Hallmarks of pluripotency. Nature, 525(7570), 469–478.

    Article  PubMed  Google Scholar 

  21. Monti, M., Imberti, B., Bianchi, N., Pezzotta, A., Morigi, M., Del Fante, C., et al. (2017). A novel method for isolation of pluripotent stem cells from human umbilical cord blood. Stem Cells Development, 26(17), 1258–1269.

    Article  CAS  PubMed  Google Scholar 

  22. Havens, A. M., Sun, H., Shiozawa, Y., Jung, Y., Wang, J., Mishra, A., et al. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells and Development, 23, 689–701.

    Article  PubMed  Google Scholar 

  23. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Review and Reports, 13(2), 202–216.

    Article  CAS  Google Scholar 

  24. Bhartiya, D. (2017). Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Reviews. https://doi.org/10.1007/s12015-017-9756-y.

    Google Scholar 

  25. Norton, M. T., Fortner, K. A., Bizargity, P., & Bonney, E. A. (2009). Pregnancy alters the proliferation and apoptosis of mouse splenic erythroid lineage cells and leukocytes. Biology of Reproduction, 81(3), 457–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fowler, J. H., & Nash, D. J. (1968). Erythropoiesis in the spleen and bone marrow of the pregnant mouse. Developmental Biology, 18(4), 331–353.

    Article  CAS  PubMed  Google Scholar 

  27. Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132(4), 583–597.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez, C. (2007). Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nature Review of Genetics, 8(6), 462–472.

    Article  CAS  Google Scholar 

  29. Jan, Y. N., & Jan, L. Y. (1998). Asymmetric cell division. Nature, 392(6678), 775–778.

    Article  CAS  PubMed  Google Scholar 

  30. Rhyu, M. S., Jan, L. Y., & Jan, Y. N. (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell, 76(3), 477–491.

    Article  CAS  PubMed  Google Scholar 

  31. Wu, M., Kwon, H. Y., Rattis, F., Blum, J., Zhao, C., Ashkenazi, R., et al. (2007). Imaging hematopoietic precursor division in real time. Cell Stem Cell, 1(5), 541–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beckmann, J., Scheitza, S., Wernet, P., Fischer, J. C., & Giebel, B. (2007). Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins. Blood, 109(12), 5494–5501.

    Article  CAS  PubMed  Google Scholar 

  33. Takano, H., Ema, H., Sudo, K., & Nakauchi, H. (2004). Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. Journal of Experimental Medicine, 199(3), 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhartiya, D. (2015). Stem cells, progenitors & regenerative medicine: a retrospection. The Indian Journal of Medical Research, 141(2), 154–161.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao, Q. W., Zhou, Y. W., Li, W. X., Kang, B., Zhang, X. Q., Yang, Y., et al. (2015). Akt mediated phosphorylation of Oct4 is associated with the proliferation of stem-like cancer cells. Oncology Reports, 33(4), 1621–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratajczak, M. Z., Shin, D. M., Liu, R., Marlicz, W., Tarnowski, M., Ratajczak, J., et al. (2010). Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Review and Reports, 6, 307–316.

    Article  Google Scholar 

  37. Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23, 1124–1134.

    Article  CAS  PubMed  Google Scholar 

  38. Grill, S. W. (2010). Cell biology. Forced to be unequal. Science, 330(6004), 597–598.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Department of Science and Technology, Government of India, New Delhi for providing RG with Woman Scientist Fellowship under Scheme-A. SR/WOSa/LS-1318/2014. We thank Ankita for her help; Gayatri and Sushma for flow cytometry, Vaibhab for art work and Reshma and Shobha for confocal microscopy.

Author information

Authors and Affiliations

Authors

Contributions

RG: Designed and carried out all experiments, data analysis and manuscript preparation. SM: Helped with the surgeries. DB: Arranged finances, experiments design, results interpretation and manuscript preparation. All authors read and agree with the final version of the manuscript [RA/521/08.2017].

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Financial Support

Financial support for the study was provided by Department of Science and Technology, Government of India under Woman Scientist Scheme-A [SR/WOSA/LS-1318/2014] and NIRRH core support provided by Indian Council of Medical Research, Government of India, New Delhi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2.53 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, R., Metkari, S. & Bhartiya, D. Dynamics of Bone Marrow VSELs and HSCs in Response to Treatment with Gonadotropin and Steroid Hormones, during Pregnancy and Evidence to Support Their Asymmetric/Symmetric Cell Divisions. Stem Cell Rev and Rep 14, 110–124 (2018). https://doi.org/10.1007/s12015-017-9781-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9781-x

Keywords

Navigation