Skip to main content
Erschienen in: Clinical Reviews in Allergy & Immunology 2/2017

22.11.2016

Beyond Genetics: What Causes Type 1 Diabetes

verfasst von: Zhen Wang, Zhiguo Xie, Qianjin Lu, Christopher Chang, Zhiguang Zhou

Erschienen in: Clinical Reviews in Allergy & Immunology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Type 1 diabetes (T1D) is an autoimmune disease resulting from T cell-mediated β cell destruction in the pancreas of genetically susceptible individuals. Extensive familial and population genetic studies uncovered the strong linkage and association between HLA gene variants and T1D. Non-HLA genes have also been associated with T1D, such as INS, CTLA4, and PTPN22. T1D is considered as one of the most heritable common diseases. However, evidence that monozygotic twins have incomplete concordance of disease susceptibility provides convincing proof that environmental factors also play important roles in the pathogenesis of the disease. Environmental factors can induce the alterations of gene expression via epigenetic mechanisms. Epigenetic modifications refer to the alterations in gene expression without changes of the DNA sequence, but instead occur as a result of DNA methylation, histone modifications, and miRNA regulation. Aberrant epigenetic modifications will cause the dysregulation of gene expression, thus leading to a variety of human diseases. There are significant differences in DNA methylation, histone modifications, and miRNA profiling found in T1D patients compared with healthy individuals. Epigenetic modifications contribute to the pathogenesis of T1D mainly by regulating the expression of susceptible genes in T1D. These susceptible genes are involved in antigen presentation (such as HLA), immune tolerance (such as FOXP3 and CTLA4), autoreactive T cell response (such as GAD65), and β cell functions (such as INS). A better understanding of epigenetic mechanisms for regulating susceptible genes of T1D will help identify candidates that target epigenetic pathways to control and/or prevent T1D. Knowledge of epigenetic changes in T1D also provides us with potential biomarkers for diagnosis, prognostication, personalized treatment, and prevention of the disease.
Literatur
1.
Zurück zum Zitat Stankov K, Benc D, Draskovic D (2013) Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 132(6):1112–1122PubMedCrossRef Stankov K, Benc D, Draskovic D (2013) Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 132(6):1112–1122PubMedCrossRef
2.
Zurück zum Zitat Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9(5):A355–A365PubMedCrossRef Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9(5):A355–A365PubMedCrossRef
3.
Zurück zum Zitat Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39(3):481–497CrossRef Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39(3):481–497CrossRef
4.
Zurück zum Zitat Zhang H, Xia W, Yu Q et al (2008) Increasing incidence of type 1 diabetes in children aged 0-14 years in Harbin, China (1990-2000). Primary Care Diabetes 2(3):121–126PubMedCrossRef Zhang H, Xia W, Yu Q et al (2008) Increasing incidence of type 1 diabetes in children aged 0-14 years in Harbin, China (1990-2000). Primary Care Diabetes 2(3):121–126PubMedCrossRef
5.
Zurück zum Zitat Canivell S, Gomis R (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev 13(4–5):403–407PubMedCrossRef Canivell S, Gomis R (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev 13(4–5):403–407PubMedCrossRef
6.
Zurück zum Zitat Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. Jan 2007; 3(1):36–45; quiz 32p following 69. Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. Jan 2007; 3(1):36–45; quiz 32p following 69.
7.
Zurück zum Zitat Pozzilli P, Di Mario U (2001) Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 24(8):1460–1467PubMedCrossRef Pozzilli P, Di Mario U (2001) Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 24(8):1460–1467PubMedCrossRef
8.
Zurück zum Zitat Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15(4):516–542PubMedCrossRef Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15(4):516–542PubMedCrossRef
9.
Zurück zum Zitat Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. Nov 30 1974; 2(7892):1279–1283. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. Nov 30 1974; 2(7892):1279–1283.
10.
Zurück zum Zitat Eisenbarth GS, Type I (1986) Diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314(21):1360–1368PubMedCrossRef Eisenbarth GS, Type I (1986) Diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314(21):1360–1368PubMedCrossRef
11.
Zurück zum Zitat Steck AK, Dong F, Waugh K et al (2016) Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun 72:113–117PubMedCrossRef Steck AK, Dong F, Waugh K et al (2016) Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun 72:113–117PubMedCrossRef
12.
Zurück zum Zitat Morran MP, Omenn GS, Pietropaolo M (2008) Immunology and genetics of type 1 diabetes. Mount Sinai J Med , New York 75(4):314–327CrossRef Morran MP, Omenn GS, Pietropaolo M (2008) Immunology and genetics of type 1 diabetes. Mount Sinai J Med , New York 75(4):314–327CrossRef
13.
Zurück zum Zitat Zerif E, Maalem A, Gaudreau S, et al. (2016) Constitutively active Stat 5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. Journal of autoimmunity Zerif E, Maalem A, Gaudreau S, et al. (2016) Constitutively active Stat 5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. Journal of autoimmunity
14.
Zurück zum Zitat Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169PubMedPubMedCentralCrossRef Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Buckner JH, Nepom GT (2016) Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J Autoimmun 71:44–50PubMedCrossRef Buckner JH, Nepom GT (2016) Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J Autoimmun 71:44–50PubMedCrossRef
16.
Zurück zum Zitat Wilcox NS, Rui J, Hebrok M, Herold KC (2016) Life and death of beta cells in type 1 diabetes: a comprehensive review. J Autoimmun 71:51–58PubMedCrossRef Wilcox NS, Rui J, Hebrok M, Herold KC (2016) Life and death of beta cells in type 1 diabetes: a comprehensive review. J Autoimmun 71:51–58PubMedCrossRef
17.
Zurück zum Zitat Saunders D, Powers AC (2016) Replicative capacity of beta-cells and type 1 diabetes. J Autoimmun 71:59–68PubMedCrossRef Saunders D, Powers AC (2016) Replicative capacity of beta-cells and type 1 diabetes. J Autoimmun 71:59–68PubMedCrossRef
18.
Zurück zum Zitat Shao S, He F, Yang Y, Yuan G, Zhang M, Yu X (2012) Th17 cells in type 1 diabetes. Cell Immunol 280(1):16–21PubMedCrossRef Shao S, He F, Yang Y, Yuan G, Zhang M, Yu X (2012) Th17 cells in type 1 diabetes. Cell Immunol 280(1):16–21PubMedCrossRef
19.
Zurück zum Zitat Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med. Jun 4 2001; 193(11):F41–F46. Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med. Jun 4 2001; 193(11):F41–F46.
20.
Zurück zum Zitat Kuhn C, Besancon A, Lemoine S et al (2016) Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. J Autoimmun 71:69–77PubMedCrossRef Kuhn C, Besancon A, Lemoine S et al (2016) Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. J Autoimmun 71:69–77PubMedCrossRef
21.
Zurück zum Zitat Hamilton-Williams EE, Bergot AS, Reeves PL, Steptoe RJ (2016) Maintenance of peripheral tolerance to islet antigens. J Autoimmun 72:118–125PubMedCrossRef Hamilton-Williams EE, Bergot AS, Reeves PL, Steptoe RJ (2016) Maintenance of peripheral tolerance to islet antigens. J Autoimmun 72:118–125PubMedCrossRef
22.
Zurück zum Zitat Hamel Y, Mauvais FX, Pham HP et al (2016) A unique CD8(+) T lymphocyte signature in pediatric type 1 diabetes. J Autoimmun 73:54–63PubMedCrossRef Hamel Y, Mauvais FX, Pham HP et al (2016) A unique CD8(+) T lymphocyte signature in pediatric type 1 diabetes. J Autoimmun 73:54–63PubMedCrossRef
23.
Zurück zum Zitat Kuhn C, Rezende RM, da Cunha AP, et al. (2016) Mucosal administration of CD3-specific monoclonal antibody inhibits diabetes in NOD mice and in a preclinical mouse model transgenic for the CD3 epsilon chain. J Autoimmun. Oct 10 Kuhn C, Rezende RM, da Cunha AP, et al. (2016) Mucosal administration of CD3-specific monoclonal antibody inhibits diabetes in NOD mice and in a preclinical mouse model transgenic for the CD3 epsilon chain. J Autoimmun. Oct 10
24.
Zurück zum Zitat Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM study group. N Engl J Med. Feb 3 2000; 342(5):301–307. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM study group. N Engl J Med. Feb 3 2000; 342(5):301–307.
25.
Zurück zum Zitat Imagawa A, Hanafusa T, Uchigata Y et al (Aug 2003) Fulminant type 1 diabetes: a nationwide survey in Japan. Diabetes Care 26(8):2345–2352PubMedCrossRef Imagawa A, Hanafusa T, Uchigata Y et al (Aug 2003) Fulminant type 1 diabetes: a nationwide survey in Japan. Diabetes Care 26(8):2345–2352PubMedCrossRef
26.
Zurück zum Zitat Kotani R, Nagata M, Imagawa A et al (Jul 2004) T lymphocyte response against pancreatic beta cell antigens in fulminant type 1 diabetes. Diabetologia 47(7):1285–1291PubMedCrossRef Kotani R, Nagata M, Imagawa A et al (Jul 2004) T lymphocyte response against pancreatic beta cell antigens in fulminant type 1 diabetes. Diabetologia 47(7):1285–1291PubMedCrossRef
27.
Zurück zum Zitat Haseda F, Imagawa A, Murase-Mishiba Y, et al. Low CTLA-4 expression in CD4+ helper T-cells in patients with fulminant type 1 diabetes. Immunol Lett. Sep 30 2011; 139(1–2):80–86. Haseda F, Imagawa A, Murase-Mishiba Y, et al. Low CTLA-4 expression in CD4+ helper T-cells in patients with fulminant type 1 diabetes. Immunol Lett. Sep 30 2011; 139(1–2):80–86.
28.
Zurück zum Zitat Wang Z, Zheng Y, Hou C et al (2013) DNA methylation impairs TLR9 induced Foxp 3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–59PubMedCrossRef Wang Z, Zheng Y, Hou C et al (2013) DNA methylation impairs TLR9 induced Foxp 3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–59PubMedCrossRef
29.
Zurück zum Zitat Groop LC, Bottazzo GF, Doniach D (1986) Islet cell antibodies identify latent type I diabetes in patients aged 35-75 years at diagnosis. Diabetes 35(2):237–241PubMedCrossRef Groop LC, Bottazzo GF, Doniach D (1986) Islet cell antibodies identify latent type I diabetes in patients aged 35-75 years at diagnosis. Diabetes 35(2):237–241PubMedCrossRef
30.
Zurück zum Zitat Brahmkshatriya PP, Mehta AA, Saboo BD, Goyal RK (2012) Characteristics and prevalence of latent autoimmune diabetes in adults (LADA). ISRN Pharmacol 2012:580202PubMedPubMedCentralCrossRef Brahmkshatriya PP, Mehta AA, Saboo BD, Goyal RK (2012) Characteristics and prevalence of latent autoimmune diabetes in adults (LADA). ISRN Pharmacol 2012:580202PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Liu L, Li X, Xiang Y et al (2015) Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China study 3). Diabetes Care 38(1):16–21PubMedCrossRef Liu L, Li X, Xiang Y et al (2015) Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China study 3). Diabetes Care 38(1):16–21PubMedCrossRef
32.
Zurück zum Zitat Zhou Z, Xiang Y, Ji L et al (2013) Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62(2):543–550PubMedPubMedCentralCrossRef Zhou Z, Xiang Y, Ji L et al (2013) Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62(2):543–550PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Brooks-Worrell BM, Juneja R, Minokadeh A, Greenbaum CJ, Palmer JP (1999) Cellular immune responses to human islet proteins in antibody-positive type 2 diabetic patients. Diabetes 48(5):983–988PubMedCrossRef Brooks-Worrell BM, Juneja R, Minokadeh A, Greenbaum CJ, Palmer JP (1999) Cellular immune responses to human islet proteins in antibody-positive type 2 diabetic patients. Diabetes 48(5):983–988PubMedCrossRef
34.
Zurück zum Zitat Yang Z, Zhou Z, Huang G et al (2007) The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract 76(1):126–131PubMedCrossRef Yang Z, Zhou Z, Huang G et al (2007) The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract 76(1):126–131PubMedCrossRef
35.
Zurück zum Zitat Noble JA, Erlich HA (2012) Genetics of type 1 diabetes. Cold Spring Harbor Perspect Med 2(1):a007732CrossRef Noble JA, Erlich HA (2012) Genetics of type 1 diabetes. Cold Spring Harbor Perspect Med 2(1):a007732CrossRef
36.
Zurück zum Zitat Ounissi-Benkalha H, Polychronakos C (2008) The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 14(6):268–275PubMedCrossRef Ounissi-Benkalha H, Polychronakos C (2008) The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 14(6):268–275PubMedCrossRef
38.
Zurück zum Zitat Thomson G, Valdes AM, Noble JA et al (2007) Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70(2):110–127PubMedCrossRef Thomson G, Valdes AM, Noble JA et al (2007) Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70(2):110–127PubMedCrossRef
39.
Zurück zum Zitat Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T (2007) Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 77(Suppl 1):S116–S121PubMedCrossRef Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T (2007) Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 77(Suppl 1):S116–S121PubMedCrossRef
40.
Zurück zum Zitat Kawabata Y, Ikegami H, Kawaguchi Y et al (2002) Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes 51(2):545–551PubMedCrossRef Kawabata Y, Ikegami H, Kawaguchi Y et al (2002) Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes 51(2):545–551PubMedCrossRef
41.
Zurück zum Zitat Zhang XM, Wang HY, Luo YY, Ji LN. HLA-DQ, DR allele polymorphism of type 1 diabetes in the Chinese population: a meta-analysis. Chin Med J. Apr 20 2009; 122(8):980–986. Zhang XM, Wang HY, Luo YY, Ji LN. HLA-DQ, DR allele polymorphism of type 1 diabetes in the Chinese population: a meta-analysis. Chin Med J. Apr 20 2009; 122(8):980–986.
42.
Zurück zum Zitat Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. Dec 6 2007; 450(7171):887–892. Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. Dec 6 2007; 450(7171):887–892.
43.
Zurück zum Zitat Morahan G (2012) Insights into type 1 diabetes provided by genetic analyses. Curr Opin Endocrinol, Diabetes, Obes 19(4):263–270CrossRef Morahan G (2012) Insights into type 1 diabetes provided by genetic analyses. Curr Opin Endocrinol, Diabetes, Obes 19(4):263–270CrossRef
44.
Zurück zum Zitat Kawasaki E, Eguchi K (2006) Genetics of fulminant type 1 diabetes. Ann N Y Acad Sci 1079:24–30PubMedCrossRef Kawasaki E, Eguchi K (2006) Genetics of fulminant type 1 diabetes. Ann N Y Acad Sci 1079:24–30PubMedCrossRef
45.
Zurück zum Zitat Zheng C, Zhou Z, Yang L et al (2011) Fulminant type 1 diabetes mellitus exhibits distinct clinical and autoimmunity features from classical type 1 diabetes mellitus in Chinese. Diabetes Metab Res Rev 27(1):70–78PubMedCrossRef Zheng C, Zhou Z, Yang L et al (2011) Fulminant type 1 diabetes mellitus exhibits distinct clinical and autoimmunity features from classical type 1 diabetes mellitus in Chinese. Diabetes Metab Res Rev 27(1):70–78PubMedCrossRef
46.
Zurück zum Zitat Kawasaki E, Imagawa A, Makino H et al (2008) Differences in the contribution of the CTLA4 gene to susceptibility to fulminant and type 1A diabetes in Japanese patients. Diabetes Care 31(8):1608–1610PubMedPubMedCentralCrossRef Kawasaki E, Imagawa A, Makino H et al (2008) Differences in the contribution of the CTLA4 gene to susceptibility to fulminant and type 1A diabetes in Japanese patients. Diabetes Care 31(8):1608–1610PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Desai M, Zeggini E, Horton VA et al (2007) An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 50(1):68–73PubMedCrossRef Desai M, Zeggini E, Horton VA et al (2007) An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 50(1):68–73PubMedCrossRef
48.
Zurück zum Zitat Lin J, Zhou ZG, Wang JP, Zhang C, Huang G. From type 1, through LADA, to type 2 diabetes: a continuous spectrum?. Ann N Y Acad Sci. Dec 2008; 1150:99–102. Lin J, Zhou ZG, Wang JP, Zhang C, Huang G. From type 1, through LADA, to type 2 diabetes: a continuous spectrum?. Ann N Y Acad Sci. Dec 2008; 1150:99–102.
49.
50.
Zurück zum Zitat Patterson CC, Gyurus E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55(8):2142–2147PubMedCrossRef Patterson CC, Gyurus E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55(8):2142–2147PubMedCrossRef
51.
Zurück zum Zitat Assan R, Perronne C, Assan D et al (1995) Pentamidine-induced derangements of glucose homeostasis. Determinant roles of renal failure and drug accumulation. A study of 128 patients. Diabetes Care 18(1):47–55PubMedCrossRef Assan R, Perronne C, Assan D et al (1995) Pentamidine-induced derangements of glucose homeostasis. Determinant roles of renal failure and drug accumulation. A study of 128 patients. Diabetes Care 18(1):47–55PubMedCrossRef
52.
53.
Zurück zum Zitat Wilson GL, Mossman BT, Craighead JE (1983) Use of pancreatic beta cells in culture to identify diabetogenic N-nitroso compounds. In vitro 19(1):25–30PubMedCrossRef Wilson GL, Mossman BT, Craighead JE (1983) Use of pancreatic beta cells in culture to identify diabetogenic N-nitroso compounds. In vitro 19(1):25–30PubMedCrossRef
54.
Zurück zum Zitat Ebner K, Brewster DW, Matsumura F (1988) Effects of 2, 3,7, 8-tetrachlorodibenzo-p-dioxin on serum insulin and glucose levels in the rabbit. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes 23(5):427–438PubMed Ebner K, Brewster DW, Matsumura F (1988) Effects of 2, 3,7, 8-tetrachlorodibenzo-p-dioxin on serum insulin and glucose levels in the rabbit. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes 23(5):427–438PubMed
55.
Zurück zum Zitat Enan E, Matsumura F (1994) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced changes in glucose transporting activity in guinea pigs, mice, and rats in vivo and in vitro. J Biochem Toxicol 9(2):97–106PubMedCrossRef Enan E, Matsumura F (1994) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced changes in glucose transporting activity in guinea pigs, mice, and rats in vivo and in vitro. J Biochem Toxicol 9(2):97–106PubMedCrossRef
56.
Zurück zum Zitat Langer P, Tajtakova M, Guretzki HJ et al (2002) High prevalence of anti-glutamic acid decarboxylase (anti-GAD) antibodies in employees at a polychlorinated biphenyl production factory. Arch Environ Health 57(5):412–415PubMedCrossRef Langer P, Tajtakova M, Guretzki HJ et al (2002) High prevalence of anti-glutamic acid decarboxylase (anti-GAD) antibodies in employees at a polychlorinated biphenyl production factory. Arch Environ Health 57(5):412–415PubMedCrossRef
57.
Zurück zum Zitat Hu Y, Jin P, Peng J, Zhang X, Wong FS, Wen L (2016) Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. J Autoimmun 72:47–56PubMedCrossRef Hu Y, Jin P, Peng J, Zhang X, Wong FS, Wen L (2016) Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. J Autoimmun 72:47–56PubMedCrossRef
58.
Zurück zum Zitat Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW (2002) Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes 3(4):184–188PubMedCrossRef Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW (2002) Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes 3(4):184–188PubMedCrossRef
59.
Zurück zum Zitat Butalia S, Kaplan GG, Khokhar B, Rabi DM. Environmental Risk Factors and Type 1 Diabetes: Past, Present, and Future. Canadian journal of diabetes. Aug 18 2016. Butalia S, Kaplan GG, Khokhar B, Rabi DM. Environmental Risk Factors and Type 1 Diabetes: Past, Present, and Future. Canadian journal of diabetes. Aug 18 2016.
60.
Zurück zum Zitat Sepa A, Ludvigsson J (2006) Psychological stress and the risk of diabetes-related autoimmunity: a review article. Neuroimmunomodulation 13(5–6):301–308PubMed Sepa A, Ludvigsson J (2006) Psychological stress and the risk of diabetes-related autoimmunity: a review article. Neuroimmunomodulation 13(5–6):301–308PubMed
61.
Zurück zum Zitat Nielsen PR, Kragstrup TW, Deleuran BW, Benros ME (2016) Infections as risk factor for autoimmune diseases—a nationwide study. J Autoimmun 74:176–181PubMedCrossRef Nielsen PR, Kragstrup TW, Deleuran BW, Benros ME (2016) Infections as risk factor for autoimmune diseases—a nationwide study. J Autoimmun 74:176–181PubMedCrossRef
62.
Zurück zum Zitat van der Werf N, Kroese FG, Rozing J, Hillebrands JL (2007) Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 23(3):169–183PubMedCrossRef van der Werf N, Kroese FG, Rozing J, Hillebrands JL (2007) Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 23(3):169–183PubMedCrossRef
63.
Zurück zum Zitat Paun A, Yau C, Danska JS (2016) Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun 71:10–18PubMedCrossRef Paun A, Yau C, Danska JS (2016) Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun 71:10–18PubMedCrossRef
64.
Zurück zum Zitat Ferris ST, Carrero JA, Unanue ER (2016) Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. J Autoimmun 71:19–25PubMedCrossRef Ferris ST, Carrero JA, Unanue ER (2016) Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. J Autoimmun 71:19–25PubMedCrossRef
65.
Zurück zum Zitat Pearson JA, Wong FS, Wen L (Jan 2016) The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 66:76–88PubMedCrossRef Pearson JA, Wong FS, Wen L (Jan 2016) The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 66:76–88PubMedCrossRef
66.
Zurück zum Zitat Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. Oct 23 2008; 455(7216):1109–1113. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. Oct 23 2008; 455(7216):1109–1113.
67.
Zurück zum Zitat Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L (2014) Long term effect of gut microbiota transfer on diabetes development. J Autoimmun 53:85–94PubMedPubMedCentralCrossRef Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L (2014) Long term effect of gut microbiota transfer on diabetes development. J Autoimmun 53:85–94PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Javierre BM, Hernando H, Ballestar E (2011) Environmental triggers and epigenetic deregulation in autoimmune disease. Discov Med 12(67):535–545PubMed Javierre BM, Hernando H, Ballestar E (2011) Environmental triggers and epigenetic deregulation in autoimmune disease. Discov Med 12(67):535–545PubMed
69.
Zurück zum Zitat Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47(2):174–192PubMedCrossRef Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47(2):174–192PubMedCrossRef
70.
Zurück zum Zitat Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068PubMedCrossRef Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068PubMedCrossRef
71.
Zurück zum Zitat Dang MN, Buzzetti R, Pozzilli P (2013) Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev 29(1):8–18PubMedCrossRef Dang MN, Buzzetti R, Pozzilli P (2013) Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev 29(1):8–18PubMedCrossRef
72.
Zurück zum Zitat Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. Feb 23 2007; 128(4):669–681. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. Feb 23 2007; 128(4):669–681.
73.
Zurück zum Zitat Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186PubMedPubMedCentralCrossRef Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60(12):3613–3622PubMedCrossRef Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60(12):3613–3622PubMedCrossRef
75.
Zurück zum Zitat Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33(11):1665–1673PubMedCrossRef Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33(11):1665–1673PubMedCrossRef
76.
Zurück zum Zitat Lu Q, Kaplan M, Ray D, Zacharek S, Gutsch D, Richardson B (2002) Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 46(5):1282–1291PubMedCrossRef Lu Q, Kaplan M, Ray D, Zacharek S, Gutsch D, Richardson B (2002) Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 46(5):1282–1291PubMedCrossRef
77.
Zurück zum Zitat Lu Q, Wu A, Ray D et al (2003) DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 170(10):5124–5132PubMedCrossRef Lu Q, Wu A, Ray D et al (2003) DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 170(10):5124–5132PubMedCrossRef
78.
Zurück zum Zitat Lu Q, Wu A, Richardson BC (2005) Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 174(10):6212–6219PubMedCrossRef Lu Q, Wu A, Richardson BC (2005) Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 174(10):6212–6219PubMedCrossRef
79.
Zurück zum Zitat Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358PubMedCrossRef Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358PubMedCrossRef
80.
Zurück zum Zitat Takami N, Osawa K, Miura Y et al (2006) Hypermethylated promoter region of DR3, the death. Receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54(3):779–787PubMedCrossRef Takami N, Osawa K, Miura Y et al (2006) Hypermethylated promoter region of DR3, the death. Receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54(3):779–787PubMedCrossRef
81.
Zurück zum Zitat Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693PubMedCrossRef Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693PubMedCrossRef
82.
Zurück zum Zitat Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:33 Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:33
83.
Zurück zum Zitat Fradin D, Le Fur S, Mille C et al (2012) Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS One 7(5):e36278PubMedPubMedCentralCrossRef Fradin D, Le Fur S, Mille C et al (2012) Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS One 7(5):e36278PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC (2016) Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia 59(5):1021–1029PubMedCrossRef Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC (2016) Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia 59(5):1021–1029PubMedCrossRef
85.
Zurück zum Zitat Fisher MM, Perez Chumbiauca CN, Mather KJ, Mirmira RG, Tersey SA (2013) Detection of islet beta-cell death in vivo by multiplex PCR analysis of differentially methylated DNA. Endocrinology 154(9):3476–3481PubMedPubMedCentralCrossRef Fisher MM, Perez Chumbiauca CN, Mather KJ, Mirmira RG, Tersey SA (2013) Detection of islet beta-cell death in vivo by multiplex PCR analysis of differentially methylated DNA. Endocrinology 154(9):3476–3481PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Belot MP, Fradin D, Mai N et al (2013) CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS One 8(7):e68093PubMedPubMedCentralCrossRef Belot MP, Fradin D, Mai N et al (2013) CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS One 8(7):e68093PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Husseiny MI, Kaye A, Zebadua E, Kandeel F, Ferreri K (2014) Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLoS One 9(4):e94591PubMedPubMedCentralCrossRef Husseiny MI, Kaye A, Zebadua E, Kandeel F, Ferreri K (2014) Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLoS One 9(4):e94591PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A 108(47):19018–19023PubMedPubMedCentralCrossRef Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A 108(47):19018–19023PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Fisher MM, Watkins RA, Blum J et al (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64(11):3867–3872PubMedPubMedCentralCrossRef Fisher MM, Watkins RA, Blum J et al (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64(11):3867–3872PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Olsen JA, Kenna LA, Spelios MG, Hessner MJ, Akirav EM (2016) Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes. PLoS One 11(4):e0152662PubMedPubMedCentralCrossRef Olsen JA, Kenna LA, Spelios MG, Hessner MJ, Akirav EM (2016) Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes. PLoS One 11(4):e0152662PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Li Y, Zhao M, Hou C et al (Nov 2011) Abnormal DNA methylation in CD4+ T cells from people with latent autoimmune diabetes in adults. Diabetes Res Clin Pract 94(2):242–248PubMedCrossRef Li Y, Zhao M, Hou C et al (Nov 2011) Abnormal DNA methylation in CD4+ T cells from people with latent autoimmune diabetes in adults. Diabetes Res Clin Pract 94(2):242–248PubMedCrossRef
93.
Zurück zum Zitat Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34(3):J207–J219PubMedCrossRef Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34(3):J207–J219PubMedCrossRef
94.
Zurück zum Zitat Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35(5):804–810PubMed Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35(5):804–810PubMed
95.
Zurück zum Zitat Manabe H, Nasu Y, Komiyama T et al (2008) Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm Res: Off J Eur Histamine Res Soc … [et al.]. 57(1):4–10CrossRef Manabe H, Nasu Y, Komiyama T et al (2008) Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm Res: Off J Eur Histamine Res Soc … [et al.]. 57(1):4–10CrossRef
96.
Zurück zum Zitat Nishida K, Komiyama T, Miyazawa S et al (2004) Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p 21(WAF1/Cip1) expression. Arthritis Rheum 50(10):3365–3376PubMedCrossRef Nishida K, Komiyama T, Miyazawa S et al (2004) Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p 21(WAF1/Cip1) expression. Arthritis Rheum 50(10):3365–3376PubMedCrossRef
97.
Zurück zum Zitat Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28(4):177–187PubMedCrossRef Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28(4):177–187PubMedCrossRef
98.
Zurück zum Zitat Miao F, Chen Z, Zhang L et al (2012) Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem 287(20):16335–16345PubMedPubMedCentralCrossRef Miao F, Chen Z, Zhang L et al (2012) Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem 287(20):16335–16345PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Chen SS, Jenkins AJ, Majewski H (2009) Elevated plasma prostaglandins and acetylated histone in monocytes in type 1 diabetes patients. Diabet Med: J Bri Diabet Assoc 26(2):182–186CrossRef Chen SS, Jenkins AJ, Majewski H (2009) Elevated plasma prostaglandins and acetylated histone in monocytes in type 1 diabetes patients. Diabet Med: J Bri Diabet Assoc 26(2):182–186CrossRef
100.
Zurück zum Zitat Skov S, Rieneck K, Bovin LF et al (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101(4):1430–1438PubMedCrossRef Skov S, Rieneck K, Bovin LF et al (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101(4):1430–1438PubMedCrossRef
101.
Zurück zum Zitat Patel T, Patel V, Singh R, Jayaraman S (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 89(5):640–649PubMedCrossRef Patel T, Patel V, Singh R, Jayaraman S (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 89(5):640–649PubMedCrossRef
102.
Zurück zum Zitat You S, Slehoffer G, Barriot S, Bach JF, Chatenoud L (2004) Unique role of CD4 + CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci U S A 101(Suppl 2):14580–14585PubMedPubMedCentralCrossRef You S, Slehoffer G, Barriot S, Bach JF, Chatenoud L (2004) Unique role of CD4 + CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci U S A 101(Suppl 2):14580–14585PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57(12):3189–3198PubMedPubMedCentralCrossRef Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57(12):3189–3198PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Brasacchio D, Okabe J, Tikellis C et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236PubMedPubMedCentralCrossRef Brasacchio D, Okabe J, Tikellis C et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Bartel DP (2004) Micro RNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRef Bartel DP (2004) Micro RNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRef
106.
Zurück zum Zitat Tomankova T, Petrek M, Gallo J, Kriegova E. Micro RNAs: emerging regulators of immune-mediated diseases. Scandinavian journal of immunology. Oct 11 2011. Tomankova T, Petrek M, Gallo J, Kriegova E. Micro RNAs: emerging regulators of immune-mediated diseases. Scandinavian journal of immunology. Oct 11 2011.
107.
108.
Zurück zum Zitat Stagakis E, Bertsias G, Verginis P et al (2011) Identification of novel micro RNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70(8):1496–1506PubMedCrossRef Stagakis E, Bertsias G, Verginis P et al (2011) Identification of novel micro RNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70(8):1496–1506PubMedCrossRef
109.
Zurück zum Zitat Pan W, Zhu S, Yuan M et al (2010) Micro RNA-21 and micro RNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781PubMedCrossRef Pan W, Zhu S, Yuan M et al (2010) Micro RNA-21 and micro RNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781PubMedCrossRef
110.
Zurück zum Zitat Zhao S, Wang Y, Liang Y et al (2011) Micro RNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63(5):1376–1386PubMedCrossRef Zhao S, Wang Y, Liang Y et al (2011) Micro RNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63(5):1376–1386PubMedCrossRef
111.
Zurück zum Zitat Ding S, Liang Y, Zhao M et al (2012) Decreased micro RNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 64(9):2953–2963PubMedCrossRef Ding S, Liang Y, Zhao M et al (2012) Decreased micro RNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 64(9):2953–2963PubMedCrossRef
112.
Zurück zum Zitat Tang Y, Luo X, Cui H et al (2009) Micro RNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075PubMedCrossRef Tang Y, Luo X, Cui H et al (2009) Micro RNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075PubMedCrossRef
113.
Zurück zum Zitat Li J, Wan Y, Guo Q et al (2010) Altered micro RNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12(3):R81PubMedPubMedCentralCrossRef Li J, Wan Y, Guo Q et al (2010) Altered micro RNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12(3):R81PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Zhang Y, Feng ZP, Naselli G et al (2016) Micro RNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J Autoimmun 68:52–61PubMedCrossRef Zhang Y, Feng ZP, Naselli G et al (2016) Micro RNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J Autoimmun 68:52–61PubMedCrossRef
115.
Zurück zum Zitat Zhang Y, Feng ZP, Naselli G et al (2016) Corrigendum to ’Micro RNAs in CD4+ T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes’ [J. Autoimmun. 68C (2016) 52-61]. J Autoimmun 73:130PubMedCrossRef Zhang Y, Feng ZP, Naselli G et al (2016) Corrigendum to ’Micro RNAs in CD4+ T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes’ [J. Autoimmun. 68C (2016) 52-61]. J Autoimmun 73:130PubMedCrossRef
116.
Zurück zum Zitat Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F (2011) Increased expression of micro RNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27(8):862–866PubMedCrossRef Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F (2011) Increased expression of micro RNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27(8):862–866PubMedCrossRef
117.
Zurück zum Zitat Salas-Perez F, Codner E, Valencia E, Pizarro C, Carrasco E, Perez-Bravo F (2013) Micro RNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218(5):733–737PubMedCrossRef Salas-Perez F, Codner E, Valencia E, Pizarro C, Carrasco E, Perez-Bravo F (2013) Micro RNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218(5):733–737PubMedCrossRef
118.
Zurück zum Zitat Yang M, Ye L, Wang B et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7(2):158–165PubMedCrossRef Yang M, Ye L, Wang B et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7(2):158–165PubMedCrossRef
119.
Zurück zum Zitat Hezova R, Slaby O, Faltejskova P et al (2010) Micro RNA-342, microRNA-191 and micro RNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260(2):70–74PubMedCrossRef Hezova R, Slaby O, Faltejskova P et al (2010) Micro RNA-342, microRNA-191 and micro RNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260(2):70–74PubMedCrossRef
120.
Zurück zum Zitat Ruan Q, Wang T, Kameswaran V et al (2011) The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 108(29):12030–12035PubMedPubMedCentralCrossRef Ruan Q, Wang T, Kameswaran V et al (2011) The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 108(29):12030–12035PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986PubMedPubMedCentralCrossRef Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61(7):1742–1751PubMedPubMedCentralCrossRef Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61(7):1742–1751PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Zheng Y, Wang Z, Tu Y et al (2015) miR-101a and miR-30b contribute to inflammatory cytokine-mediated beta-cell dysfunction. Lab Investig; J Techn Methods Pathol 95(12):1387–1397CrossRef Zheng Y, Wang Z, Tu Y et al (2015) miR-101a and miR-30b contribute to inflammatory cytokine-mediated beta-cell dysfunction. Lab Investig; J Techn Methods Pathol 95(12):1387–1397CrossRef
124.
Zurück zum Zitat Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608PubMedCrossRef Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608PubMedCrossRef
125.
Zurück zum Zitat Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedPubMedCentral Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedPubMedCentral
126.
Zurück zum Zitat Alper CA, Husain Z, Larsen CE et al (2006) Incomplete penetrance of susceptibility genes for MHC-determined immunoglobulin deficiencies in monozygotic twins discordant for type 1 diabetes. J Autoimmun 27(2):89–95PubMedPubMedCentralCrossRef Alper CA, Husain Z, Larsen CE et al (2006) Incomplete penetrance of susceptibility genes for MHC-determined immunoglobulin deficiencies in monozygotic twins discordant for type 1 diabetes. J Autoimmun 27(2):89–95PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300PubMedPubMedCentralCrossRef Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 50:33–37PubMedCrossRef Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 50:33–37PubMedCrossRef
129.
Zurück zum Zitat Elboudwarej E, Cole M, Briggs FB et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun 68:23–29PubMedCrossRef Elboudwarej E, Cole M, Briggs FB et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun 68:23–29PubMedCrossRef
130.
Zurück zum Zitat Garyu JW, Meffre E, Cotsapas C, Herold KC (2016) Progress and challenges for treating type 1 diabetes. J Autoimmun 71:1–9PubMedCrossRef Garyu JW, Meffre E, Cotsapas C, Herold KC (2016) Progress and challenges for treating type 1 diabetes. J Autoimmun 71:1–9PubMedCrossRef
131.
Metadaten
Titel
Beyond Genetics: What Causes Type 1 Diabetes
verfasst von
Zhen Wang
Zhiguo Xie
Qianjin Lu
Christopher Chang
Zhiguang Zhou
Publikationsdatum
22.11.2016
Verlag
Springer US
Erschienen in
Clinical Reviews in Allergy & Immunology / Ausgabe 2/2017
Print ISSN: 1080-0549
Elektronische ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-016-8592-1

Weitere Artikel der Ausgabe 2/2017

Clinical Reviews in Allergy & Immunology 2/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.