Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2008

01.06.2008 | Review Paper

Neurogenesis and Exercise: Past and Future Directions

verfasst von: Henriette van Praag

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Research in humans and animals has shown that exercise improves mood and cognition. Physical activity also causes a robust increase in neurogenesis in the dentate gyrus of the hippocampus, a brain area important for learning and memory. The positive correlation between running and neurogenesis has raised the hypothesis that the new hippocampal neurons may mediate, in part, improved learning associated with exercise. The present review gives an overview of research pertaining to exercise-induced cell genesis, its possible relevance to memory function and the cellular mechanisms that may be involved in this process.
Literatur
Zurück zum Zitat Aberg, M. A., Aberg, N. D., Hedbacker, H., Oscarsson, J., & Eriksson, P. S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. Journal of Neuroscience, 20, 2896–2903.PubMed Aberg, M. A., Aberg, N. D., Hedbacker, H., Oscarsson, J., & Eriksson, P. S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. Journal of Neuroscience, 20, 2896–2903.PubMed
Zurück zum Zitat Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. Journal of Neuroscience, 25, 4217–4221.PubMed Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. Journal of Neuroscience, 25, 4217–4221.PubMed
Zurück zum Zitat Allen, D. M., van Praag, H., Ray, J., Weaver, Z., Winrow, C. J., Carter, T. A., Braquet, R., Harrington, E., Ried, T., Brown, K. D., Gage, F. H., & Barlow, C. (2001). Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes & Development, 15, 554–566. Allen, D. M., van Praag, H., Ray, J., Weaver, Z., Winrow, C. J., Carter, T. A., Braquet, R., Harrington, E., Ried, T., Brown, K. D., Gage, F. H., & Barlow, C. (2001). Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes & Development, 15, 554–566.
Zurück zum Zitat Allison, D. B., Fontaine, K. R., Manson, J. E., Stevens, J., & VanItallie, T. B. (1999). Annual deaths attributable to obesity in the United States. Journal of the American Medical Association, 282, 1530–1538.PubMed Allison, D. B., Fontaine, K. R., Manson, J. E., Stevens, J., & VanItallie, T. B. (1999). Annual deaths attributable to obesity in the United States. Journal of the American Medical Association, 282, 1530–1538.PubMed
Zurück zum Zitat Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.PubMed Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.PubMed
Zurück zum Zitat Altman, J., & Das, G. D. (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204, 1161–1163.PubMed Altman, J., & Das, G. D. (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204, 1161–1163.PubMed
Zurück zum Zitat Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learning & Memory, 9, 1–9. Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learning & Memory, 9, 1–9.
Zurück zum Zitat Anderson, B. J., Rapp, D. N., Baek, D. H., McCloskey, D. P., Coburn-Litvak, P. S., & Robinson, J. K. (2000). Exercise influences spatial learning in the radial arm maze. Physiology & Behavior, 70, 425–429. Anderson, B. J., Rapp, D. N., Baek, D. H., McCloskey, D. P., Coburn-Litvak, P. S., & Robinson, J. K. (2000). Exercise influences spatial learning in the radial arm maze. Physiology & Behavior, 70, 425–429.
Zurück zum Zitat Ang, E. T., Dawe, G. S., Wong, P. T., Moochhala, S., & Ng, Y. K. (2006). Alterations in spatial learning and memory after forced exercise. Brain Research, 1113, 186–193.PubMed Ang, E. T., Dawe, G. S., Wong, P. T., Moochhala, S., & Ng, Y. K. (2006). Alterations in spatial learning and memory after forced exercise. Brain Research, 1113, 186–193.PubMed
Zurück zum Zitat Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doriaswamy, M., Moore, K., Craighead, W. E., Baldewicz, T. T., & Krishnan, K. R. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62, 633–638.PubMed Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doriaswamy, M., Moore, K., Craighead, W. E., Baldewicz, T. T., & Krishnan, K. R. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62, 633–638.PubMed
Zurück zum Zitat Baruch, D. E., Swain, R. A., & Helmstetter, F. J. (2004). Effects of exercise on Pavlovian fear conditioning. Behavioral Neuroscience, 118, 1123–1127.PubMed Baruch, D. E., Swain, R. A., & Helmstetter, F. J. (2004). Effects of exercise on Pavlovian fear conditioning. Behavioral Neuroscience, 118, 1123–1127.PubMed
Zurück zum Zitat Bizon, J. L., & Gallagher, M. (2003). Production of new cells in the rat dentate gyrus over the lifespan: Relation to cognitive decline. European Journal of Neuroscience, 18, 215–219.PubMed Bizon, J. L., & Gallagher, M. (2003). Production of new cells in the rat dentate gyrus over the lifespan: Relation to cognitive decline. European Journal of Neuroscience, 18, 215–219.PubMed
Zurück zum Zitat Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572.PubMed Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572.PubMed
Zurück zum Zitat Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.PubMed Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.PubMed
Zurück zum Zitat Boekhoorn, K., Joels, M., & Lucassen, P. J. (2006). Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease, 24, 1–14.PubMed Boekhoorn, K., Joels, M., & Lucassen, P. J. (2006). Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease, 24, 1–14.PubMed
Zurück zum Zitat Bohannon, R. W. (1993). Physical rehabilitation in neurologic diseases. Current Opinion in Neurology, 6, 765–772.PubMed Bohannon, R. W. (1993). Physical rehabilitation in neurologic diseases. Current Opinion in Neurology, 6, 765–772.PubMed
Zurück zum Zitat Booth, F. W., Chakravarthy, M. V., Gordon, S. E., & Spangenburg, E. E. (2002). Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy. Journal of Applied Physiology, 93, 3–30.PubMed Booth, F. W., Chakravarthy, M. V., Gordon, S. E., & Spangenburg, E. E. (2002). Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy. Journal of Applied Physiology, 93, 3–30.PubMed
Zurück zum Zitat Bronzino, J. D., Abu-Hasaballah, K., Austin-LaFrance, R. J., & Morgane, P. J. (1994). Maturation of long-term potentiation in the hippocampal dentate gyrus of the freely moving rat. Hippocampus, 4(4), 439–446.PubMed Bronzino, J. D., Abu-Hasaballah, K., Austin-LaFrance, R. J., & Morgane, P. J. (1994). Maturation of long-term potentiation in the hippocampal dentate gyrus of the freely moving rat. Hippocampus, 4(4), 439–446.PubMed
Zurück zum Zitat Brown, J., Cooper-Kuhn, C. M., Kempermann, G., van Praag, H., Winkler, J., Gage, F. H., & Kuhn, H. G. (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience, 17, 2042–2046.PubMed Brown, J., Cooper-Kuhn, C. M., Kempermann, G., van Praag, H., Winkler, J., Gage, F. H., & Kuhn, H. G. (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience, 17, 2042–2046.PubMed
Zurück zum Zitat Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., & Fadel, J. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology, Biochemistry, and Behavior, 84, 306–312.PubMed Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., & Fadel, J. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology, Biochemistry, and Behavior, 84, 306–312.PubMed
Zurück zum Zitat Calof, A. L. (1995). Intrinsic and extrinsic factors regulating vertebrate neurogenesis. Current Opinion in Neurobiology, 5, 19–27.PubMed Calof, A. L. (1995). Intrinsic and extrinsic factors regulating vertebrate neurogenesis. Current Opinion in Neurobiology, 5, 19–27.PubMed
Zurück zum Zitat Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D., & During, M. J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genetics, 36, 827–835.PubMed Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D., & During, M. J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genetics, 36, 827–835.PubMed
Zurück zum Zitat Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A., & Lledo, P. M. (2003). Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience, 6(5), 507–518.PubMed Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A., & Lledo, P. M. (2003). Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience, 6(5), 507–518.PubMed
Zurück zum Zitat Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20, 2926–2933.PubMed Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20, 2926–2933.PubMed
Zurück zum Zitat Chaouloff, F. (1989). Physical exercise and brain monoamines: A review. Acta Physiologica Scandinavica, 137, 1–13.PubMed Chaouloff, F. (1989). Physical exercise and brain monoamines: A review. Acta Physiologica Scandinavica, 137, 1–13.PubMed
Zurück zum Zitat Chevallier, N. L., Soriano, S., Kang, D. E., Masliah, E., Hu, G., & Koo, E. H. (2005). Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. American Journal of Pathology, 167, 151–159.PubMed Chevallier, N. L., Soriano, S., Kang, D. E., Masliah, E., Hu, G., & Koo, E. H. (2005). Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. American Journal of Pathology, 167, 151–159.PubMed
Zurück zum Zitat Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58, 176–180. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58, 176–180.
Zurück zum Zitat Collin, T., Arvidsson, A., Kokaia, Z., & Lindvall, O. (2005). Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Experimental Neurology, 195, 71–80.PubMed Collin, T., Arvidsson, A., Kokaia, Z., & Lindvall, O. (2005). Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Experimental Neurology, 195, 71–80.PubMed
Zurück zum Zitat Costa, D. A., Cracchiolo, J. R., Bachstetter, A. D., Hughes, T. F., Bales, K. R., Paul, S. M., Mervis, R. F., Arendash, G. W., & Potter, H. (2007). Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiology of Aging, 28, 831–844.PubMed Costa, D. A., Cracchiolo, J. R., Bachstetter, A. D., Hughes, T. F., Bales, K. R., Paul, S. M., Mervis, R. F., Arendash, G. W., & Potter, H. (2007). Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiology of Aging, 28, 831–844.PubMed
Zurück zum Zitat Cracchiolo, J. R., Mori, T., Nazian, S. J., Tan, J., Potter, H., & Arendash, G. W. (2007). Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer's mice against cognitive impairment, reduce Abeta deposition, & increase synaptic immunoreactivity. Neurobiology of Learning and Memory, 88, 277–294.PubMed Cracchiolo, J. R., Mori, T., Nazian, S. J., Tan, J., Potter, H., & Arendash, G. W. (2007). Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer's mice against cognitive impairment, reduce Abeta deposition, & increase synaptic immunoreactivity. Neurobiology of Learning and Memory, 88, 277–294.PubMed
Zurück zum Zitat Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S., & van der Kooy, D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. Journal of Neuroscience, 16, 2649–2658.PubMed Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S., & van der Kooy, D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. Journal of Neuroscience, 16, 2649–2658.PubMed
Zurück zum Zitat Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M., Butterworth, N. J., Dragunow, M., Connor, B., & Faull, R. L. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 9023–9027.PubMed Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M., Butterworth, N. J., Dragunow, M., Connor, B., & Faull, R. L. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 9023–9027.PubMed
Zurück zum Zitat Dayer, A. G., Cleaver, K. M., Abouantoun, T., & Cameron, H. A. (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. Journal of Cell Biology, 168, 415–427.PubMed Dayer, A. G., Cleaver, K. M., Abouantoun, T., & Cameron, H. A. (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. Journal of Cell Biology, 168, 415–427.PubMed
Zurück zum Zitat Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006a). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140, 823–833.PubMed Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006a). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140, 823–833.PubMed
Zurück zum Zitat Ding, Y. H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006b). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3, 15–23.PubMed Ding, Y. H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006b). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3, 15–23.PubMed
Zurück zum Zitat Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., & Csernansky, J. G. (2004). Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576). mutant mice by isolation stress. Neuroscience, 127, 601–609.PubMed Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., & Csernansky, J. G. (2004). Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576). mutant mice by isolation stress. Neuroscience, 127, 601–609.PubMed
Zurück zum Zitat Donovan, M. H., Yazdani, U., Norris, R. D., Games, D., German, D. C., & Eisch, A. J. (2006). Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. Journal of the American Medical Association, 495, 70–83. Donovan, M. H., Yazdani, U., Norris, R. D., Games, D., German, D. C., & Eisch, A. J. (2006). Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. Journal of the American Medical Association, 495, 70–83.
Zurück zum Zitat Drapeau, E., Mayo, W., Aurousseau, C., Le Moal, M., Piazza, P. V., & Abrous, D. N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 14385–14390.PubMed Drapeau, E., Mayo, W., Aurousseau, C., Le Moal, M., Piazza, P. V., & Abrous, D. N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 14385–14390.PubMed
Zurück zum Zitat Duan, W., et al. (2003). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 2911–2916.PubMed Duan, W., et al. (2003). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 2911–2916.PubMed
Zurück zum Zitat Ehninger, D., & Kempermann, G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cerebral Cortex, 13, 845–851.PubMed Ehninger, D., & Kempermann, G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cerebral Cortex, 13, 845–851.PubMed
Zurück zum Zitat Eisch, A. J., Barrot, M., Schad, C. A., Self D.W., & Nestler, E. J. (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97, 7579–7584.PubMed Eisch, A. J., Barrot, M., Schad, C. A., Self D.W., & Nestler, E. J. (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97, 7579–7584.PubMed
Zurück zum Zitat Encinas, J. M., Vaahtokari, A., & Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 8233–8238.PubMed Encinas, J. M., Vaahtokari, A., & Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 8233–8238.PubMed
Zurück zum Zitat Ernst, C., Olson, A. K., Pinel, J. P., Lam, R. W., & Christie, B. R. (2006). Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? Journal of Psychiatry & Neuroscience, 31, 84–92. Ernst, C., Olson, A. K., Pinel, J. P., Lam, R. W., & Christie, B. R. (2006). Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? Journal of Psychiatry & Neuroscience, 31, 84–92.
Zurück zum Zitat Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., & Palmer, T. D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18, 2803–2812.PubMed Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., & Palmer, T. D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18, 2803–2812.PubMed
Zurück zum Zitat Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.PubMed Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.PubMed
Zurück zum Zitat Fischer, W., Sirevaag, A., Wiegand, S. J., Lindsay, R. M., & Björklund, A. (1994). Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 91, 8607–8011.PubMed Fischer, W., Sirevaag, A., Wiegand, S. J., Lindsay, R. M., & Björklund, A. (1994). Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 91, 8607–8011.PubMed
Zurück zum Zitat Fordyce, D. E., & Farrar, R. P. (1991). Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning. Behavioural Brain Research, 46, 123–133.PubMed Fordyce, D. E., & Farrar, R. P. (1991). Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning. Behavioural Brain Research, 46, 123–133.PubMed
Zurück zum Zitat Fordyce, D. E., & Wehner, J. M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Research, 619, 111–119.PubMed Fordyce, D. E., & Wehner, J. M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Research, 619, 111–119.PubMed
Zurück zum Zitat Friedland, R. P., Fritsch, T., Smyth, K. A., Koss, E., Lerner, A. J., Chen, C. H., Petot, G. J., & Debanne, S. M. (2001). Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proceedings of the National Academy of Sciences of the United States of America, 98, 3440–3445.PubMed Friedland, R. P., Fritsch, T., Smyth, K. A., Koss, E., Lerner, A. J., Chen, C. H., Petot, G. J., & Debanne, S. M. (2001). Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proceedings of the National Academy of Sciences of the United States of America, 98, 3440–3445.PubMed
Zurück zum Zitat Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., & Sofroniew, M. V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neuroscience, 7(11), 1233–1241.PubMed Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., & Sofroniew, M. V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neuroscience, 7(11), 1233–1241.PubMed
Zurück zum Zitat Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076), 589–593.PubMed Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076), 589–593.PubMed
Zurück zum Zitat Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4), 559–566.PubMed Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4), 559–566.PubMed
Zurück zum Zitat Gil, J. M., Mohapel, P., Araújo, I. M., Popovic, N., Li, J. Y., Brundin, P., & Petersén, A. (2005). Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiology of Disease, 20, 744–751.PubMed Gil, J. M., Mohapel, P., Araújo, I. M., Popovic, N., Li, J. Y., Brundin, P., & Petersén, A. (2005). Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiology of Disease, 20, 744–751.PubMed
Zurück zum Zitat Gobbo, O. L., & O’Mara, S. M. (2005). Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behavioural Brain Research, 159(1), 21–26.PubMed Gobbo, O. L., & O’Mara, S. M. (2005). Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behavioural Brain Research, 159(1), 21–26.PubMed
Zurück zum Zitat Gomez-Pinilla, F., Dao, L., & So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Research, 764, 1–8.PubMed Gomez-Pinilla, F., Dao, L., & So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Research, 764, 1–8.PubMed
Zurück zum Zitat Gomez-Pinilla, F., So, V., & Kesslak, J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: Neural substrates for increased cognition associated with exercise. Neuroscience, 85, 53–61.PubMed Gomez-Pinilla, F., So, V., & Kesslak, J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: Neural substrates for increased cognition associated with exercise. Neuroscience, 85, 53–61.PubMed
Zurück zum Zitat Gould, E., Reeves, A. J., Graziano, M. S., & Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science, 286, 548–552.PubMed Gould, E., Reeves, A. J., Graziano, M. S., & Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science, 286, 548–552.PubMed
Zurück zum Zitat Gould, E., Woolley, C. S., & McEwen, B. S. (1990). Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience, 37(2), 367–375.PubMed Gould, E., Woolley, C. S., & McEwen, B. S. (1990). Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience, 37(2), 367–375.PubMed
Zurück zum Zitat Grealy, M. A., Johnson, D. A., & Rushton, S. K. (1999). Improving cognitive function after brain injury: The use of exercise and virtual reality. Archives of Physical Medicine and Rehabilitation, 80, 661–667.PubMed Grealy, M. A., Johnson, D. A., & Rushton, S. K. (1999). Improving cognitive function after brain injury: The use of exercise and virtual reality. Archives of Physical Medicine and Rehabilitation, 80, 661–667.PubMed
Zurück zum Zitat Grote, H. E., Bull, N. D., Howard, M. L., van Dellen, A., Blakemore, C., Bartlett, P. F., & Hannan, A. J. (2005). Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine. European Journal of Neuroscience, 22, 2081–2088.PubMed Grote, H. E., Bull, N. D., Howard, M. L., van Dellen, A., Blakemore, C., Bartlett, P. F., & Hannan, A. J. (2005). Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine. European Journal of Neuroscience, 22, 2081–2088.PubMed
Zurück zum Zitat Halagappa, V. K., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 26, 212–220.PubMed Halagappa, V. K., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 26, 212–220.PubMed
Zurück zum Zitat Harburg, G. C., Hall, F. S., Harrist, A. V., Sora, I., Uhl, G. R., & Eisch, A. J. (2007). Knockout of the mu opioid receptor enhances the survival of adult-generated hippocampal granule cell neurons. Neuroscience, 144, 77–87.PubMed Harburg, G. C., Hall, F. S., Harrist, A. V., Sora, I., Uhl, G. R., & Eisch, A. J. (2007). Knockout of the mu opioid receptor enhances the survival of adult-generated hippocampal granule cell neurons. Neuroscience, 144, 77–87.PubMed
Zurück zum Zitat Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., & Mattson, M. P. (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. Journal of Neurochemistry, 83(6), 1509–1524.PubMed Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., & Mattson, M. P. (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. Journal of Neurochemistry, 83(6), 1509–1524.PubMed
Zurück zum Zitat Hernández-Rabaza V., Barcia J. A., Llorens-Martín M., Trejo J. L., & Canales, J. J. (2007). Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus. Brain Research Bulletin, 72(4–6), 315–323.PubMed Hernández-Rabaza V., Barcia J. A., Llorens-Martín M., Trejo J. L., & Canales, J. J. (2007). Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus. Brain Research Bulletin, 72(4–6), 315–323.PubMed
Zurück zum Zitat Holick, K. A., Lee, D. C., Hen, R., & Dulawa, S. C. (2008). Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology, 33, 406–417.PubMed Holick, K. A., Lee, D. C., Hen, R., & Dulawa, S. C. (2008). Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology, 33, 406–417.PubMed
Zurück zum Zitat Holmes, M. M., Galea, L. A., Mistlberger, R. E., & Kempermann, G. (2004). Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research, 76, 216–222.PubMed Holmes, M. M., Galea, L. A., Mistlberger, R. E., & Kempermann, G. (2004). Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research, 76, 216–222.PubMed
Zurück zum Zitat Jacobs, B. L., van Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5, 262–569.PubMed Jacobs, B. L., van Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5, 262–569.PubMed
Zurück zum Zitat Jankowsky, J. L., et al. (2005). Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. Journal of Neuroscience, 25, 5217–5224.PubMed Jankowsky, J. L., et al. (2005). Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. Journal of Neuroscience, 25, 5217–5224.PubMed
Zurück zum Zitat Jansen, J. F., Shamblott, M. J., van Zijl, P. C., Lehtimäki, K. K., Bulte, J. W., Gearhart, J. D., Hakumäki, J. M. (2006). Stem cell profiling by nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 56(3), 666–670.PubMed Jansen, J. F., Shamblott, M. J., van Zijl, P. C., Lehtimäki, K. K., Bulte, J. W., Gearhart, J. D., Hakumäki, J. M. (2006). Stem cell profiling by nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 56(3), 666–670.PubMed
Zurück zum Zitat Jin, K., Galvan, V., Xie, L., Mao, X. O., Gorostiza, O. F., Bredesen, D. E., & Greenberg, D. A. (2004a). Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 13363–13367.PubMed Jin, K., Galvan, V., Xie, L., Mao, X. O., Gorostiza, O. F., Bredesen, D. E., & Greenberg, D. A. (2004a). Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 13363–13367.PubMed
Zurück zum Zitat Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., & Greenberg, D. A. (2004b). Increased hippocampal neurogenesis in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 343–347.PubMed Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., & Greenberg, D. A. (2004b). Increased hippocampal neurogenesis in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 343–347.PubMed
Zurück zum Zitat Jin, K., Zhu, K., Sun, Y., Mao, X. O., Xie, L., & Greenberg, D. A. (2002). Vascular endothelial growth factor (VEGF). stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 11946–11950.PubMed Jin, K., Zhu, K., Sun, Y., Mao, X. O., Xie, L., & Greenberg, D. A. (2002). Vascular endothelial growth factor (VEGF). stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 11946–11950.PubMed
Zurück zum Zitat Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662.PubMed Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662.PubMed
Zurück zum Zitat Kaspar, B. K., Frost, L. M., Christian, L., Umapathi, P., & Gage, F. H. (2005). Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Annals of Neurology, 57, 649–655.PubMed Kaspar, B. K., Frost, L. M., Christian, L., Umapathi, P., & Gage, F. H. (2005). Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Annals of Neurology, 57, 649–655.PubMed
Zurück zum Zitat Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.PubMed Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.PubMed
Zurück zum Zitat Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18, 3206–3212.PubMed Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18, 3206–3212.PubMed
Zurück zum Zitat Kesner, R. P. (2007). A behavioral analysis of dentate gyrus function. Progress in Brain Research, 163, 567–576.PubMedCrossRef Kesner, R. P. (2007). A behavioral analysis of dentate gyrus function. Progress in Brain Research, 163, 567–576.PubMedCrossRef
Zurück zum Zitat Kitamura, T., Mishina, M., & Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neuroscience Research, 47, 55–63.PubMed Kitamura, T., Mishina, M., & Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neuroscience Research, 47, 55–63.PubMed
Zurück zum Zitat Kleim, J. A., Cooper, N. R., & VandenBerg, P. M. (2002). Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Research, 934, 1–6.PubMed Kleim, J. A., Cooper, N. R., & VandenBerg, P. M. (2002). Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Research, 934, 1–6.PubMed
Zurück zum Zitat Koehl, M., Meerlo, P., Gonzales, D., Rontal, A., Turek, F. W., & Abrous, D. N. (2008). Exercise-induced promotion of hippocampal cell proliferation requires β-endorphin. FASEB Journal [Epub ahead of print]. Koehl, M., Meerlo, P., Gonzales, D., Rontal, A., Turek, F. W., & Abrous, D. N. (2008). Exercise-induced promotion of hippocampal cell proliferation requires β-endorphin. FASEB Journal [Epub ahead of print].
Zurück zum Zitat Kohl, Z., Kandasamy, M., Winner, B., Aigner, R., Gross, C., Coullard-Despres, S., Bogdahn, U., Aigner, L., & Winkler, J. (2007). Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Research, 1155, 24–33.PubMed Kohl, Z., Kandasamy, M., Winner, B., Aigner, R., Gross, C., Coullard-Despres, S., Bogdahn, U., Aigner, L., & Winkler, J. (2007). Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Research, 1155, 24–33.PubMed
Zurück zum Zitat Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.PubMed Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.PubMed
Zurück zum Zitat Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMed Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMed
Zurück zum Zitat Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, E., Ehninger, D., & Kempermann, G. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiology of Aging, 27, 1505–1513.PubMed Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, E., Ehninger, D., & Kempermann, G. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiology of Aging, 27, 1505–1513.PubMed
Zurück zum Zitat Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.PubMed Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.PubMed
Zurück zum Zitat Kuhn, H. G., Winkler, J., Kemptermann, G., Thal, L. J., & Gage, F. H. (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. Journal of Neuroscience, 17, 5820–5829.PubMed Kuhn, H. G., Winkler, J., Kemptermann, G., Thal, L. J., & Gage, F. H. (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. Journal of Neuroscience, 17, 5820–5829.PubMed
Zurück zum Zitat Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58, 498–504.PubMed Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58, 498–504.PubMed
Zurück zum Zitat Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ, 322, 763–767.PubMed Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ, 322, 763–767.PubMed
Zurück zum Zitat Lazarov, O., et al. (2005). Environmental enrichment reduces A levels and amyloid deposition in transgenic mice. Cell, 120, 701–713.PubMed Lazarov, O., et al. (2005). Environmental enrichment reduces A levels and amyloid deposition in transgenic mice. Cell, 120, 701–713.PubMed
Zurück zum Zitat Lazic, S. E., Grote, H., Armstrong, R. J., Blakemore, C., Hannan, A. J., van Dellen, A., & Barker, R. A. (2004). Decreased hippocampal cell proliferation in R6/1 Huntington's mice. Neuroreport, 15, 811–813.PubMed Lazic, S. E., Grote, H., Armstrong, R. J., Blakemore, C., Hannan, A. J., van Dellen, A., & Barker, R. A. (2004). Decreased hippocampal cell proliferation in R6/1 Huntington's mice. Neuroreport, 15, 811–813.PubMed
Zurück zum Zitat Lazic, S. E., Grote, H. E., Blakemore, C., Hannan, A. J., van Dellen, A., Phillips, W., & Barker, R. A. (2006). Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: Effects of environmental enrichment. European Journal of Neuroscience, 23, 1829–1838.PubMed Lazic, S. E., Grote, H. E., Blakemore, C., Hannan, A. J., van Dellen, A., Phillips, W., & Barker, R. A. (2006). Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: Effects of environmental enrichment. European Journal of Neuroscience, 23, 1829–1838.PubMed
Zurück zum Zitat Leuner, B., Kozorovitskiy, Y., Gross, C. G., & Gould, E. (2007). Diminished adult neurogenesis in the marmoset brain precedes old age. Proceedings of the National Academy of Sciences of the United States of America, 104, 17169–17173.PubMed Leuner, B., Kozorovitskiy, Y., Gross, C. G., & Gould, E. (2007). Diminished adult neurogenesis in the marmoset brain precedes old age. Proceedings of the National Academy of Sciences of the United States of America, 104, 17169–17173.PubMed
Zurück zum Zitat Lichtenwalner, R., Forbes, M., Bennett, S., Lynch, C., Sonntag, W., Riddle, D. (2001). Intracerebroventricular infusion of insulin-like growth factor-1 ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience, 107, 606–613. Lichtenwalner, R., Forbes, M., Bennett, S., Lynch, C., Sonntag, W., Riddle, D. (2001). Intracerebroventricular infusion of insulin-like growth factor-1 ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience, 107, 606–613.
Zurück zum Zitat Lopez-Lopez, C., LeRoith, T., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 9833–9838.PubMed Lopez-Lopez, C., LeRoith, T., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 9833–9838.PubMed
Zurück zum Zitat Lucas, G., Rymar, V. V., Du, J., Mnie-Filali, O., Bisgaard, C., Manta, S., Lambas-Senas, L., Wiborg, O., Haddjeri, N., Piñeyro, G., Sadikot, A. F., & Debonnel, G. (2007). Serotonin(4). (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron, 55, 712–725.PubMed Lucas, G., Rymar, V. V., Du, J., Mnie-Filali, O., Bisgaard, C., Manta, S., Lambas-Senas, L., Wiborg, O., Haddjeri, N., Piñeyro, G., Sadikot, A. F., & Debonnel, G. (2007). Serotonin(4). (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron, 55, 712–725.PubMed
Zurück zum Zitat Magavi, S. S., Leavitt, B. R., & Macklis, J. D. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951–955.PubMed Magavi, S. S., Leavitt, B. R., & Macklis, J. D. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951–955.PubMed
Zurück zum Zitat Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.PubMed Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.PubMed
Zurück zum Zitat Mandyam, C. D., Wee, S., Eisch, A. J., Richardson, H. N., & Koob, G. F. (2007). Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. Journal of Neuroscience, 27, 11442–11450.PubMed Mandyam, C. D., Wee, S., Eisch, A. J., Richardson, H. N., & Koob, G. F. (2007). Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. Journal of Neuroscience, 27, 11442–11450.PubMed
Zurück zum Zitat Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., Henn, F., Benveniste, H., Djuric, P. M., Enikolopov, G., & Maletic-Savatic, M. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318, 980–985.PubMed Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., Henn, F., Benveniste, H., Djuric, P. M., Enikolopov, G., & Maletic-Savatic, M. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318, 980–985.PubMed
Zurück zum Zitat Mangiarini, L, Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trotteir, Y., Lehrach, H., Davies, S. W., & Bates, G. P. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506.PubMed Mangiarini, L, Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trotteir, Y., Lehrach, H., Davies, S. W., & Bates, G. P. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506.PubMed
Zurück zum Zitat McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., Lowell, B. B., Fanselow, M. S., Wilson, M. A., & Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834), 94–99 (July 6).PubMed McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., Lowell, B. B., Fanselow, M. S., Wilson, M. A., & Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834), 94–99 (July 6).PubMed
Zurück zum Zitat Menalled, L. B., & Chesselet, M. F. (2002). Mouse models of Huntington’s disease. Trends in Pharmacological Sciences, 23, 32–39.PubMed Menalled, L. B., & Chesselet, M. F. (2002). Mouse models of Huntington’s disease. Trends in Pharmacological Sciences, 23, 32–39.PubMed
Zurück zum Zitat Merrill, D. A., Karim, R., Darraq, M., Chiba, A. A., & Tuszynski, M. H. (2003). Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. Journal of the American Medical Association, 459, 201–207. Merrill, D. A., Karim, R., Darraq, M., Chiba, A. A., & Tuszynski, M. H. (2003). Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. Journal of the American Medical Association, 459, 201–207.
Zurück zum Zitat Meshi, D., Drew, M. R., Saxe, M., Ansorge, M. S., David, D., Santarelli, L., Malapani, C., Moore, H., & Hen, R. (2006). Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nature Neuroscience, 9, 729–731.PubMed Meshi, D., Drew, M. R., Saxe, M., Ansorge, M. S., David, D., Santarelli, L., Malapani, C., Moore, H., & Hen, R. (2006). Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nature Neuroscience, 9, 729–731.PubMed
Zurück zum Zitat Ming, G. L., & Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 28, 223–250.PubMed Ming, G. L., & Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 28, 223–250.PubMed
Zurück zum Zitat Molteni, R., Ying, Z., & Gómez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16, 1107–1116.PubMed Molteni, R., Ying, Z., & Gómez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16, 1107–1116.PubMed
Zurück zum Zitat Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.PubMed Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.PubMed
Zurück zum Zitat Narita, M., Kuzumaki, N., Miyatake, M., Sato, F., Wachi, H., Seyama, Y., & Suzuki, T. (2006). Role of delta-opioid receptor function in neurogenesis and neuroprotection. Journal of Neurochemistry, 97, 1494–1505.PubMed Narita, M., Kuzumaki, N., Miyatake, M., Sato, F., Wachi, H., Seyama, Y., & Suzuki, T. (2006). Role of delta-opioid receptor function in neurogenesis and neuroprotection. Journal of Neurochemistry, 97, 1494–1505.PubMed
Zurück zum Zitat Neeper, S. A., Gómez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMed Neeper, S. A., Gómez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMed
Zurück zum Zitat Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184, 124–132.PubMed Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184, 124–132.PubMed
Zurück zum Zitat O’Callaghan, R.M., Ohle, R., & Kelly, A. M. (2007). The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behavioural Brain Research, 176, 362–366.PubMed O’Callaghan, R.M., Ohle, R., & Kelly, A. M. (2007). The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behavioural Brain Research, 176, 362–366.PubMed
Zurück zum Zitat Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39, 409–421.PubMed Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39, 409–421.PubMed
Zurück zum Zitat Overstreet, L. S., Hentges, S. T., Bumaschny, V. F., de Souza, F. S., Smart, J. L., Santangelo, A. M., Low, M. J., Westbrook, G. L., & Rubinstein, M. (2004). A transgenic marker for newly born granule cells in dentate gyrus. Journal of Neuroscience, 24, 3251–3259.PubMed Overstreet, L. S., Hentges, S. T., Bumaschny, V. F., de Souza, F. S., Smart, J. L., Santangelo, A. M., Low, M. J., Westbrook, G. L., & Rubinstein, M. (2004). A transgenic marker for newly born granule cells in dentate gyrus. Journal of Neuroscience, 24, 3251–3259.PubMed
Zurück zum Zitat Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 425, 479–494.PubMed Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 425, 479–494.PubMed
Zurück zum Zitat Pang, T. Y., Stam, N. C., Nithianantharajah, J., Howard, M. L., & Hannan, A. J. (2006). Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience, 141, 569–584.PubMed Pang, T. Y., Stam, N. C., Nithianantharajah, J., Howard, M. L., & Hannan, A. J. (2006). Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience, 141, 569–584.PubMed
Zurück zum Zitat Patel, S. N., Clayton, N. S., & Krebs, J. R. (1997). Spatial learning induces neurogenesis in the avian brain. Behavioural Brain Research, 89(1–2), 115–28.PubMed Patel, S. N., Clayton, N. S., & Krebs, J. R. (1997). Spatial learning induces neurogenesis in the avian brain. Behavioural Brain Research, 89(1–2), 115–28.PubMed
Zurück zum Zitat Pencea, V., Bingaman, K. D., Wiegand, S. J., & Luskin, M. B. (2001). Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, & hypothalamus. Journal of Neuroscience, 21, 6706–6717.PubMed Pencea, V., Bingaman, K. D., Wiegand, S. J., & Luskin, M. B. (2001). Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, & hypothalamus. Journal of Neuroscience, 21, 6706–6717.PubMed
Zurück zum Zitat Pereira, A. C., Huddleston, D. E., Brickman, A. M., Susonov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.PubMed Pereira, A. C., Huddleston, D. E., Brickman, A. M., Susonov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.PubMed
Zurück zum Zitat Persson, A. I., Naylor, A. S., Jonsottir, I. H., Nyberg, F., Eriksson, P. S., & Thorlin, T. (2004). Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats. European Journal of Neuroscience, 19, 1847–1855.PubMed Persson, A. I., Naylor, A. S., Jonsottir, I. H., Nyberg, F., Eriksson, P. S., & Thorlin, T. (2004). Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats. European Journal of Neuroscience, 19, 1847–1855.PubMed
Zurück zum Zitat Persson, A. I., Thorlin, T., Bull, C., & Eriksson, P. S. (2003). Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Molecular and Cellular Neurosciences, 23, 360–372.PubMed Persson, A. I., Thorlin, T., Bull, C., & Eriksson, P. S. (2003). Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Molecular and Cellular Neurosciences, 23, 360–372.PubMed
Zurück zum Zitat Powell, K. E., & Blair, S. N. (1994). The public health burdens of sedentary living habits: Theoretical but realistic estimates. Medicine and Science in Sports and Exercise, 26, 851–856.PubMed Powell, K. E., & Blair, S. N. (1994). The public health burdens of sedentary living habits: Theoretical but realistic estimates. Medicine and Science in Sports and Exercise, 26, 851–856.PubMed
Zurück zum Zitat Radley, J. J., & Jacobs, B. L. (2002). 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Research, 955, 264–267.PubMed Radley, J. J., & Jacobs, B. L. (2002). 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Research, 955, 264–267.PubMed
Zurück zum Zitat Rai, K. S., Hattiangady, B., & Shetty, A. K. (2007). Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. European Journal of Neuroscience, 26, 1765–1779.PubMed Rai, K. S., Hattiangady, B., & Shetty, A. K. (2007). Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. European Journal of Neuroscience, 26, 1765–1779.PubMed
Zurück zum Zitat Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMed Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMed
Zurück zum Zitat Rhodes, J. S., Hosack, G. R., Girard, I., Kelley, A. E., Mitchell, G. S., & Garland T. Jr. (2001). Differential sensitivity to acute administration of cocaine, GBR 12909, & fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology, 158, 120–131.PubMed Rhodes, J. S., Hosack, G. R., Girard, I., Kelley, A. E., Mitchell, G. S., & Garland T. Jr. (2001). Differential sensitivity to acute administration of cocaine, GBR 12909, & fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology, 158, 120–131.PubMed
Zurück zum Zitat Rhodes, J. S., van Praag, H., Jeffrey, S., Girard, I., Mitchell, G. S., Garland, T. Jr., & Gage, F. H. (2003). Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behavioral Neuroscience, 117, 1006–1016.PubMed Rhodes, J. S., van Praag, H., Jeffrey, S., Girard, I., Mitchell, G. S., Garland, T. Jr., & Gage, F. H. (2003). Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behavioral Neuroscience, 117, 1006–1016.PubMed
Zurück zum Zitat Rochefort, C., Gheusi, G., Vincent, J. D., Lledo, P. M. (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. Journal of Neuroscience, 22, 2679–2689.PubMed Rochefort, C., Gheusi, G., Vincent, J. D., Lledo, P. M. (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. Journal of Neuroscience, 22, 2679–2689.PubMed
Zurück zum Zitat Rogers, R. L., Meyer, J. S., & Mortel, K. F. (1990). After reaching retirement age physical activity sustains cerebral perfusion and cognition. Journal of the American Geriatrics Society, 38, 123–128.PubMed Rogers, R. L., Meyer, J. S., & Mortel, K. F. (1990). After reaching retirement age physical activity sustains cerebral perfusion and cognition. Journal of the American Geriatrics Society, 38, 123–128.PubMed
Zurück zum Zitat Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M. E., Tessarollo, L., Maffei, L., Berardi, N., & Caleo, M. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. European Journal of Neuroscience, 24, 1850–1856.PubMed Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M. E., Tessarollo, L., Maffei, L., Berardi, N., & Caleo, M. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. European Journal of Neuroscience, 24, 1850–1856.PubMed
Zurück zum Zitat Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., & Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809.PubMed Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., & Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809.PubMed
Zurück zum Zitat Schlett, K. (2006). Glutamate as a modulator of embryonic and adult neurogenesis. Current Topics in Medicinal Chemistry, 6, 949–960.PubMed Schlett, K. (2006). Glutamate as a modulator of embryonic and adult neurogenesis. Current Topics in Medicinal Chemistry, 6, 949–960.PubMed
Zurück zum Zitat Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.PubMed Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.PubMed
Zurück zum Zitat Seki, T., & Arai, Y. (1995). Age-related production of new granule cells in the adult dentate gyrus. Neuroreport, 6, 2479–2482.PubMed Seki, T., & Arai, Y. (1995). Age-related production of new granule cells in the adult dentate gyrus. Neuroreport, 6, 2479–2482.PubMed
Zurück zum Zitat Sforzo, G. A., Seeger, T. F., Pert, C. B., Pert, A., & Dotson, C. O. (1986). In vivo opioid receptor occupation in the rat brain following exercise. Medicine and Science in Sports and Exercise, 18, 380–384.PubMed Sforzo, G. A., Seeger, T. F., Pert, C. B., Pert, A., & Dotson, C. O. (1986). In vivo opioid receptor occupation in the rat brain following exercise. Medicine and Science in Sports and Exercise, 18, 380–384.PubMed
Zurück zum Zitat Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., & Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.PubMed Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., & Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.PubMed
Zurück zum Zitat Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: A review. Journal of the American Dietetic Association, 96, 1027–1039.PubMed Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: A review. Journal of the American Dietetic Association, 96, 1027–1039.PubMed
Zurück zum Zitat Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMed Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMed
Zurück zum Zitat Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMed Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMed
Zurück zum Zitat Suominen-Troyer, S., Davis, K. J., Ismail, A. H., & Salvendy, G. (1986). Impact of physical fitness on strategy development in decision-making tasks. Perceptual and Motor Skills, 62, 71–77.PubMed Suominen-Troyer, S., Davis, K. J., Ismail, A. H., & Salvendy, G. (1986). Impact of physical fitness on strategy development in decision-making tasks. Perceptual and Motor Skills, 62, 71–77.PubMed
Zurück zum Zitat Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., Konda, S., Engberg, K., Lauterbur, P. C., & Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117, 1037–1046.PubMed Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., Konda, S., Engberg, K., Lauterbur, P. C., & Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117, 1037–1046.PubMed
Zurück zum Zitat Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., & Gage, F. H. (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442, 929–933.PubMed Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., & Gage, F. H. (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442, 929–933.PubMed
Zurück zum Zitat Tattersfield, A. S., Croon, R. J., Liu, Y. W., Kells, A. P., Faull, R. L., & Connor, B. (2004). Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience, 127, 319–332.PubMed Tattersfield, A. S., Croon, R. J., Liu, Y. W., Kells, A. P., Faull, R. L., & Connor, B. (2004). Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience, 127, 319–332.PubMed
Zurück zum Zitat Thored, P., Wood, J., Arvidsson, A., Cammenga, J., Kokaia, Z., & Lindvall, O. (2007). Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke, 38, 3032–3039.PubMed Thored, P., Wood, J., Arvidsson, A., Cammenga, J., Kokaia, Z., & Lindvall, O. (2007). Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke, 38, 3032–3039.PubMed
Zurück zum Zitat Tillerson, J. L., Caudle, W. M., Reveron, M. E., & Miller, G. W. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience, 119, 899–911.PubMed Tillerson, J. L., Caudle, W. M., Reveron, M. E., & Miller, G. W. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience, 119, 899–911.PubMed
Zurück zum Zitat Tong, L., Shen, H., Perreau, V. M., Balazs, R., & Cotman, C. W. (2001). Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiology of Disease, 8, 1046–1056.PubMed Tong, L., Shen, H., Perreau, V. M., Balazs, R., & Cotman, C. W. (2001). Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiology of Disease, 8, 1046–1056.PubMed
Zurück zum Zitat Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMed Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMed
Zurück zum Zitat van Dellen, A., Blakemore, C., Deacon, R., York, D., & Hannan, A. J. (2000). Delaying the onset of Huntington's in mice. Nature, 404, 721–722.PubMed van Dellen, A., Blakemore, C., Deacon, R., York, D., & Hannan, A. J. (2000). Delaying the onset of Huntington's in mice. Nature, 404, 721–722.PubMed
Zurück zum Zitat van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMed van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMed
Zurück zum Zitat van der Borght, K., Ferrari, F., Klauke, K., Roman, V., Havekes, R., Sgoifo, A., van der Zee, E. A., & Meerlo, P. (2006). Hippocampal cell proliferation across the day: Increase by running wheel activity, but no effect of sleep and wakefulness. Behavioural Brain Research, 167, 36–41.PubMed van der Borght, K., Ferrari, F., Klauke, K., Roman, V., Havekes, R., Sgoifo, A., van der Zee, E. A., & Meerlo, P. (2006). Hippocampal cell proliferation across the day: Increase by running wheel activity, but no effect of sleep and wakefulness. Behavioural Brain Research, 167, 36–41.PubMed
Zurück zum Zitat van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMed van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMed
Zurück zum Zitat van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–270.PubMed van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–270.PubMed
Zurück zum Zitat van Praag, H., Lucero, M. J., Yeo, G. W., Stecker, K., Heivand, N., Zhao, C., Yip, E., Afandor, M., Schroeter, H., Hammerstone, J., & Gage, F. H. (2007). Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. Journal of Neuroscience, 27, 5869–5878.PubMed van Praag, H., Lucero, M. J., Yeo, G. W., Stecker, K., Heivand, N., Zhao, C., Yip, E., Afandor, M., Schroeter, H., Hammerstone, J., & Gage, F. H. (2007). Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. Journal of Neuroscience, 27, 5869–5878.PubMed
Zurück zum Zitat van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMed van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMed
Zurück zum Zitat van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–8685.PubMed van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–8685.PubMed
Zurück zum Zitat Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.PubMed Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.PubMed
Zurück zum Zitat Verret, L., Jankowsky, J. L., Xu, G. M., Borchelt, D. R., & Rampon, C. (2007). Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. Journal of Neuroscience, 27, 6771–6780.PubMed Verret, L., Jankowsky, J. L., Xu, G. M., Borchelt, D. R., & Rampon, C. (2007). Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. Journal of Neuroscience, 27, 6771–6780.PubMed
Zurück zum Zitat Vollmayr, B., Mahlstedt, M. M., & Henn, F. A. (2007). Neurogenesis and depression: What animal models tell us about the link. European Archives of Psychiatry and Clinical Neuroscience, 257, 300–303.PubMed Vollmayr, B., Mahlstedt, M. M., & Henn, F. A. (2007). Neurogenesis and depression: What animal models tell us about the link. European Archives of Psychiatry and Clinical Neuroscience, 257, 300–303.PubMed
Zurück zum Zitat Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.PubMed Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.PubMed
Zurück zum Zitat Wang, R., Dineley, K. T., Sweatt, J. D., & Zheng, H. (2004). Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience, 126, 305–312.PubMed Wang, R., Dineley, K. T., Sweatt, J. D., & Zheng, H. (2004). Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience, 126, 305–312.PubMed
Zurück zum Zitat Wang, S., Scott, B. W., & Wojtowicz, J. M. (2000). Heterogenous properties of dentate granule neurons in the adult rat. Journal of Neurobiology, 42(2), 248–257 (Feb 5).PubMed Wang, S., Scott, B. W., & Wojtowicz, J. M. (2000). Heterogenous properties of dentate granule neurons in the adult rat. Journal of Neurobiology, 42(2), 248–257 (Feb 5).PubMed
Zurück zum Zitat Wen, P. H., Hof, P. R., Chen, X., Gluck, K., Austin, G., Younkin, S. G., Younkin, L. H., DeGasperi, R., Gama Soma, M. A., Robakis, N. K., Haroutunian, V., & Elder, G. A. (2004). The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Experimental Neurology, 188, 224–237.PubMed Wen, P. H., Hof, P. R., Chen, X., Gluck, K., Austin, G., Younkin, S. G., Younkin, L. H., DeGasperi, R., Gama Soma, M. A., Robakis, N. K., Haroutunian, V., & Elder, G. A. (2004). The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Experimental Neurology, 188, 224–237.PubMed
Zurück zum Zitat Widenfalk, J., Olson, L., Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34, 125–132.PubMed Widenfalk, J., Olson, L., Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34, 125–132.PubMed
Zurück zum Zitat Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A., & Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87, 597–609.PubMed Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A., & Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87, 597–609.PubMed
Zurück zum Zitat Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biological Psychiatry, 60, 1314–1323.PubMed Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biological Psychiatry, 60, 1314–1323.PubMed
Zurück zum Zitat Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinksy, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161, 1703–1708.PubMed Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinksy, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161, 1703–1708.PubMed
Zurück zum Zitat Zhao, C., Teng, E. M., Summers, R.G. Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.PubMed Zhao, C., Teng, E. M., Summers, R.G. Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.PubMed
Zurück zum Zitat Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and Cell Neurosciences, 11, 234–245. Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and Cell Neurosciences, 11, 234–245.
Metadaten
Titel
Neurogenesis and Exercise: Past and Future Directions
verfasst von
Henriette van Praag
Publikationsdatum
01.06.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8028-z

Weitere Artikel der Ausgabe 2/2008

NeuroMolecular Medicine 2/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.