Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2008

01.12.2008 | Review Paper

Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases

verfasst von: Peter J. Adhihetty, M. Flint Beal

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatinekinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and Huntington’s disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington’s and Parkinson’s disease but appears to be less effective for ALS and Alzheimer’s disease.
Literatur
Zurück zum Zitat Adhihetty, P. J., & Hood, D. A. (2003). Mechanisms of apoptosis in skeletal muscle. Basic and applied myology, 13, 171–179. Adhihetty, P. J., & Hood, D. A. (2003). Mechanisms of apoptosis in skeletal muscle. Basic and applied myology, 13, 171–179.
Zurück zum Zitat Adhihetty, P. J., Irrcher, I., Joseph, A. M., Ljubicic, V., & Hood, D. A. (2003). Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental Physiology, 88, 99–107. doi:10.1113/eph8802505.PubMed Adhihetty, P. J., Irrcher, I., Joseph, A. M., Ljubicic, V., & Hood, D. A. (2003). Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental Physiology, 88, 99–107. doi:10.​1113/​eph8802505.PubMed
Zurück zum Zitat Alston, T. A., Mela, L., & Bright, H. J. (1977). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 74, 3767–3771. doi:10.1073/pnas.74.9.3767.PubMed Alston, T. A., Mela, L., & Bright, H. J. (1977). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 74, 3767–3771. doi:10.​1073/​pnas.​74.​9.​3767.PubMed
Zurück zum Zitat Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., Jenkins, B. G., Ferrante, K. L., Thomas, M., et al. (2001). Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiology of Disease, 8, 479–491. doi:10.1006/nbdi.2001.0406.PubMed Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., Jenkins, B. G., Ferrante, K. L., Thomas, M., et al. (2001). Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiology of Disease, 8, 479–491. doi:10.​1006/​nbdi.​2001.​0406.PubMed
Zurück zum Zitat Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434, 658–662. doi:10.1038/nature03434.PubMed Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434, 658–662. doi:10.​1038/​nature03434.PubMed
Zurück zum Zitat Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., et al. (1993). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. Journal of Neuroscience, 13, 4181–4192.PubMed Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., et al. (1993). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. Journal of Neuroscience, 13, 4181–4192.PubMed
Zurück zum Zitat Beal, M. F. (2000c). Limited-time exposure to mitochondrial toxins may lead to chronic progressive neurodegenerative diseases. Movement Disorders, 15, 434–435. doi:10.1002/1531-8257(200005)15:3<434::AID-MDS1002>3.0.CO;2-Q.PubMed Beal, M. F. (2000c). Limited-time exposure to mitochondrial toxins may lead to chronic progressive neurodegenerative diseases. Movement Disorders, 15, 434–435. doi:10.1002/1531-8257(200005)15:3<434::AID-MDS1002>3.0.CO;2-Q.PubMed
Zurück zum Zitat Beal, M. F., & Ferrante, R. J. (2004). Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nature Reviews. Neuroscience, 5, 373–384. doi:10.1038/nrn1386.PubMed Beal, M. F., & Ferrante, R. J. (2004). Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nature Reviews. Neuroscience, 5, 373–384. doi:10.​1038/​nrn1386.PubMed
Zurück zum Zitat Benzi, G., & Ceci, A. (2001). Creatine as nutritional supplementation and medicinal product. Journal of Sports Medicine and Physical Fitness, 41, 1–10.PubMed Benzi, G., & Ceci, A. (2001). Creatine as nutritional supplementation and medicinal product. Journal of Sports Medicine and Physical Fitness, 41, 1–10.PubMed
Zurück zum Zitat Boero, J., Qin, W., Cheng, J., Woolsey, T. A., Strauss, A. W., & Khuchua, Z. (2003). Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: Changing patterns in development and with increased activity. Molecular and Cellular Biochemistry, 244, 69–76. doi:10.1023/A:1022409101641.PubMed Boero, J., Qin, W., Cheng, J., Woolsey, T. A., Strauss, A. W., & Khuchua, Z. (2003). Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: Changing patterns in development and with increased activity. Molecular and Cellular Biochemistry, 244, 69–76. doi:10.​1023/​A:​1022409101641.PubMed
Zurück zum Zitat Bogdanov, M. B., Ferrante, R. J., Kuemmerle, S., Klivenyi, P., & Beal, M. F. (1998a). Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington’s disease. Journal of Neurochemistry, 71, 2642–2644.PubMed Bogdanov, M. B., Ferrante, R. J., Kuemmerle, S., Klivenyi, P., & Beal, M. F. (1998a). Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington’s disease. Journal of Neurochemistry, 71, 2642–2644.PubMed
Zurück zum Zitat Bogdanov, M. B., Ramos, L. E., Xu, Z., & Beal, M. F. (1998b). Elevated “hydroxyl radical” generation in vivo in an animal model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 71, 1321–1324.PubMed Bogdanov, M. B., Ramos, L. E., Xu, Z., & Beal, M. F. (1998b). Elevated “hydroxyl radical” generation in vivo in an animal model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 71, 1321–1324.PubMed
Zurück zum Zitat Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., et al. (1993). Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. Journal of Neurochemistry, 60, 356–359. doi:10.1111/j.1471-4159.1993.tb05859.x.PubMed Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., et al. (1993). Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. Journal of Neurochemistry, 60, 356–359. doi:10.​1111/​j.​1471-4159.​1993.​tb05859.​x.PubMed
Zurück zum Zitat Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., et al. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proceedings of the National Academy of Sciences of the United States of America, 92, 7105–7109. doi:10.1073/pnas.92.15.7105.PubMed Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., et al. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proceedings of the National Academy of Sciences of the United States of America, 92, 7105–7109. doi:10.​1073/​pnas.​92.​15.​7105.PubMed
Zurück zum Zitat Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology, 41, 646–653. doi:10.1002/ana.410410514.PubMed Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology, 41, 646–653. doi:10.​1002/​ana.​410410514.PubMed
Zurück zum Zitat Browne, S. E., Ferrante, R. J., & Beal, M. F. (1999). Oxidative stress in Huntington’s disease. Brain Pathology, 9, 147–163.PubMed Browne, S. E., Ferrante, R. J., & Beal, M. F. (1999). Oxidative stress in Huntington’s disease. Brain Pathology, 9, 147–163.PubMed
Zurück zum Zitat Burklen, T. S., Schlattner, U., Homayouni, R., Gough, K., Rak, M., Szeghalmi, A., et al. (2006). The Creatine Kinase/Creatine Connection to Alzheimer’s Disease: CK-Inactivation, APP-CK Complexes and Focal Creatine Deposits. Journal of Biomedicine and Biotechnology, 2006, 35936. doi:10.1155/JBB/2006/35936.PubMed Burklen, T. S., Schlattner, U., Homayouni, R., Gough, K., Rak, M., Szeghalmi, A., et al. (2006). The Creatine Kinase/Creatine Connection to Alzheimer’s Disease: CK-Inactivation, APP-CK Complexes and Focal Creatine Deposits. Journal of Biomedicine and Biotechnology, 2006, 35936. doi:10.​1155/​JBB/​2006/​35936.PubMed
Zurück zum Zitat Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060. doi:10.1016/S0891-5849(02)00794-3.PubMed Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060. doi:10.​1016/​S0891-5849(02)00794-3.PubMed
Zurück zum Zitat Candlish, E., La, C. J., & Unrau, A. M. (1969). The biosynthesis of 3-nitropropionic acid in creeping indigo (Indigofera spicata). Biochemistry, 8, 182–186. doi:10.1021/bi00829a026.PubMed Candlish, E., La, C. J., & Unrau, A. M. (1969). The biosynthesis of 3-nitropropionic acid in creeping indigo (Indigofera spicata). Biochemistry, 8, 182–186. doi:10.​1021/​bi00829a026.PubMed
Zurück zum Zitat Carri, M. T., Ferri, A., Battistoni, A., Famhy, L., Gabbianelli, R., Poccia, F., et al. (1997). Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Letters, 414, 365–368. doi:10.1016/S0014-5793(97)01051-X.PubMed Carri, M. T., Ferri, A., Battistoni, A., Famhy, L., Gabbianelli, R., Poccia, F., et al. (1997). Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Letters, 414, 365–368. doi:10.​1016/​S0014-5793(97)01051-X.PubMed
Zurück zum Zitat Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., et al. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. Journal of Neurochemistry, 82, 1524–1532. doi:10.1046/j.1471-4159.2002.01103.x.PubMed Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., et al. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. Journal of Neurochemistry, 82, 1524–1532. doi:10.​1046/​j.​1471-4159.​2002.​01103.​x.PubMed
Zurück zum Zitat Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., et al. (2002b). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 33, 562–571. doi:10.1016/S0891-5849(02)00914-0.PubMed Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., et al. (2002b). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 33, 562–571. doi:10.​1016/​S0891-5849(02)00914-0.PubMed
Zurück zum Zitat Ceddia, R. B., & Sweeney, G. (2004). Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. Journal of Physiology, 555, 409–421.PubMed Ceddia, R. B., & Sweeney, G. (2004). Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. Journal of Physiology, 555, 409–421.PubMed
Zurück zum Zitat Csukly, K., Ascah, A., Matas, J., Gardiner, P. F., Fontaine, E., & Burelle, Y. (2006). Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. Journal of Physiology, 574, 319–327. doi:10.1113/jphysiol.2006.109702.PubMed Csukly, K., Ascah, A., Matas, J., Gardiner, P. F., Fontaine, E., & Burelle, Y. (2006). Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. Journal of Physiology, 574, 319–327. doi:10.​1113/​jphysiol.​2006.​109702.PubMed
Zurück zum Zitat Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69. doi:10.1016/j.cell.2006.09.015.PubMed Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69. doi:10.​1016/​j.​cell.​2006.​09.​015.PubMed
Zurück zum Zitat David, S., Shoemaker, M., & Haley, B. E. (1998). Abnormal properties of creatine kinase in Alzheimer’s disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Research. Molecular Brain Research, 54, 276–287. doi:10.1016/S0169-328X(97)00343-4.PubMed David, S., Shoemaker, M., & Haley, B. E. (1998). Abnormal properties of creatine kinase in Alzheimer’s disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Research. Molecular Brain Research, 54, 276–287. doi:10.​1016/​S0169-328X(97)00343-4.PubMed
Zurück zum Zitat de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., & Wands, J. R. (2000). Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Laboratory Investigation, 80, 1323–1335. doi:10.1038/labinvest.3780140.PubMed de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., & Wands, J. R. (2000). Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Laboratory Investigation, 80, 1323–1335. doi:10.​1038/​labinvest.​3780140.PubMed
Zurück zum Zitat Dedeoglu, A., Kubilus, J. K., Yang, L., Ferrante, K. L., Hersch, S. M., Beal, M. F., et al. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Journal of Neurochemistry, 85, 1359–1367. doi:10.1046/j.1471-4159.2003.01706.x.PubMed Dedeoglu, A., Kubilus, J. K., Yang, L., Ferrante, K. L., Hersch, S. M., Beal, M. F., et al. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Journal of Neurochemistry, 85, 1359–1367. doi:10.​1046/​j.​1471-4159.​2003.​01706.​x.PubMed
Zurück zum Zitat Dolder, M., Walzel, O., Speer, U., Schlattner, T., & Wallimann, T. (2003). Inhibition of the mitochondrial transition by creatine kinase substrates. Requirement for microcompartmentation. Journal of Biological Chemistry, 278, 17760–17766. doi:10.1074/jbc.M208705200.PubMed Dolder, M., Walzel, O., Speer, U., Schlattner, T., & Wallimann, T. (2003). Inhibition of the mitochondrial transition by creatine kinase substrates. Requirement for microcompartmentation. Journal of Biological Chemistry, 278, 17760–17766. doi:10.​1074/​jbc.​M208705200.PubMed
Zurück zum Zitat Eppenberger, H. M., Dawson, D. M., & Kaplan, N. O. (1967). The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. Journal of Biological Chemistry, 242, 204–209.PubMed Eppenberger, H. M., Dawson, D. M., & Kaplan, N. O. (1967). The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. Journal of Biological Chemistry, 242, 204–209.PubMed
Zurück zum Zitat Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., et al. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. Journal of Neuroscience, 20, 4389–4397.PubMed Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., et al. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. Journal of Neuroscience, 20, 4389–4397.PubMed
Zurück zum Zitat Gallant, M., Rak, M., Szeghalmi, A., Del Bigio, M. R., Westaway, D., Yang, J., et al. (2006). Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue. Journal of Biological Chemistry, 281, 5–8. doi:10.1074/jbc.C500244200.PubMed Gallant, M., Rak, M., Szeghalmi, A., Del Bigio, M. R., Westaway, D., Yang, J., et al. (2006). Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue. Journal of Biological Chemistry, 281, 5–8. doi:10.​1074/​jbc.​C500244200.PubMed
Zurück zum Zitat Groeneveld, G. J., Van Kan, H. J., Kalmijn, S., Veldink, J. H., Guchelaar, H. J., Wokke, J. H., et al. (2003). Riluzole serum concentrations in patients with ALS: Associations with side effects and symptoms. Neurology, 61, 1141–1143.PubMed Groeneveld, G. J., Van Kan, H. J., Kalmijn, S., Veldink, J. H., Guchelaar, H. J., Wokke, J. H., et al. (2003). Riluzole serum concentrations in patients with ALS: Associations with side effects and symptoms. Neurology, 61, 1141–1143.PubMed
Zurück zum Zitat Gu, M., Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M., & Schapira, A. H. (1996). Mitochondrial defect in Huntington’s disease caudate nucleus. Annals of Neurology, 39, 385–389. doi:10.1002/ana.410390317.PubMed Gu, M., Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M., & Schapira, A. H. (1996). Mitochondrial defect in Huntington’s disease caudate nucleus. Annals of Neurology, 39, 385–389. doi:10.​1002/​ana.​410390317.PubMed
Zurück zum Zitat Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775. doi:10.1126/science.8209258.PubMed Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775. doi:10.​1126/​science.​8209258.PubMed
Zurück zum Zitat Henshaw, R., Jenkins, B. G., Schulz, J. B., Ferrante, R. J., Kowall, N. W., Rosen, B. R., et al. (1994). Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Research, 647, 161–166. doi:10.1016/0006-8993(94)91412-5.PubMed Henshaw, R., Jenkins, B. G., Schulz, J. B., Ferrante, R. J., Kowall, N. W., Rosen, B. R., et al. (1994). Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Research, 647, 161–166. doi:10.​1016/​0006-8993(94)91412-5.PubMed
Zurück zum Zitat Hensley, K., Butterfield, D. A., Mattson, M., Aksenova, M., Harris, M., Wu, J. F., et al. (1995). A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: Implications of “molecular shrapnel” for Alzheimer’s disease. Proceedings of the Western Pharmacology Society, 38, 113–120.PubMed Hensley, K., Butterfield, D. A., Mattson, M., Aksenova, M., Harris, M., Wu, J. F., et al. (1995). A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: Implications of “molecular shrapnel” for Alzheimer’s disease. Proceedings of the Western Pharmacology Society, 38, 113–120.PubMed
Zurück zum Zitat Hervias, I., Beal, M. F., & Manfredi, G. (2006). Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle and Nerve, 33, 598–608. doi:10.1002/mus.20489.PubMed Hervias, I., Beal, M. F., & Manfredi, G. (2006). Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle and Nerve, 33, 598–608. doi:10.​1002/​mus.​20489.PubMed
Zurück zum Zitat Hoyer, S. (2004). Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: Therapeutic implications. Advances in Experimental Medicine and Biology, 541, 135–152.PubMed Hoyer, S. (2004). Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: Therapeutic implications. Advances in Experimental Medicine and Biology, 541, 135–152.PubMed
Zurück zum Zitat Jacobus, W. E., & Lehninger, A. L. (1973). Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. Journal of Biological Chemistry, 248, 4803–4810.PubMed Jacobus, W. E., & Lehninger, A. L. (1973). Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. Journal of Biological Chemistry, 248, 4803–4810.PubMed
Zurück zum Zitat Jenkins, B. G., Koroshetz, W. J., Beal, M. F., & Rosen, B. R. (1993). Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology, 43, 2689–2695.PubMed Jenkins, B. G., Koroshetz, W. J., Beal, M. F., & Rosen, B. R. (1993). Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology, 43, 2689–2695.PubMed
Zurück zum Zitat Jost, C. R., Van Der Zee, C. E., In ‘t Zandt, H. J., Oerlemans, F., Verheij, M., Streijger, F., et al. (2002). Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. European Journal of Neuroscience, 15, 1692–1706.PubMed Jost, C. R., Van Der Zee, C. E., In ‘t Zandt, H. J., Oerlemans, F., Verheij, M., Streijger, F., et al. (2002). Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. European Journal of Neuroscience, 15, 1692–1706.PubMed
Zurück zum Zitat Juhn, M. S., & Tarnopolsky, M. (1998a). Oral creatine supplementation and athletic performance: A critical review. Clinical Journal of Sport Medicine, 8, 286–297.PubMed Juhn, M. S., & Tarnopolsky, M. (1998a). Oral creatine supplementation and athletic performance: A critical review. Clinical Journal of Sport Medicine, 8, 286–297.PubMed
Zurück zum Zitat Juhn, M. S., & Tarnopolsky, M. (1998b). Potential side effects of oral creatine supplementation: A critical review. Clinical Journal of Sport Medicine, 8, 298–304.PubMedCrossRef Juhn, M. S., & Tarnopolsky, M. (1998b). Potential side effects of oral creatine supplementation: A critical review. Clinical Journal of Sport Medicine, 8, 298–304.PubMedCrossRef
Zurück zum Zitat Klivenyi, P., Ferrante, R. J., Matthews, R. T., Bogdanov, M. B., Klein, A. M., Andreassen, O. A., et al. (1999). Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Medicine, 5, 347–350. doi:10.1038/6568.PubMed Klivenyi, P., Ferrante, R. J., Matthews, R. T., Bogdanov, M. B., Klein, A. M., Andreassen, O. A., et al. (1999). Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Medicine, 5, 347–350. doi:10.​1038/​6568.PubMed
Zurück zum Zitat Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 427, 461–465. doi:10.1038/nature02229.PubMed Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 427, 461–465. doi:10.​1038/​nature02229.PubMed
Zurück zum Zitat Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., & Beal, M. F. (1997). Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Annals of Neurology, 41, 160–165. doi:10.1002/ana.410410206.PubMed Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., & Beal, M. F. (1997). Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Annals of Neurology, 41, 160–165. doi:10.​1002/​ana.​410410206.PubMed
Zurück zum Zitat Krige, D., Carroll, M. T., Cooper, J. M., Marsden, C. D., & Schapira, A. H. (1992). Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Annals of Neurology, 32, 782–788. doi:10.1002/ana.410320612.PubMed Krige, D., Carroll, M. T., Cooper, J. M., Marsden, C. D., & Schapira, A. H. (1992). Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Annals of Neurology, 32, 782–788. doi:10.​1002/​ana.​410320612.PubMed
Zurück zum Zitat Li, X., Burklen, T., Yuan, X., Schlattner, U., Desiderio, D. M., Wallimann, T., et al. (2006). Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Molecular and Cellular Neurosciences, 31, 263–272. doi:10.1016/j.mcn.2005.09.015.PubMed Li, X., Burklen, T., Yuan, X., Schlattner, U., Desiderio, D. M., Wallimann, T., et al. (2006). Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Molecular and Cellular Neurosciences, 31, 263–272. doi:10.​1016/​j.​mcn.​2005.​09.​015.PubMed
Zurück zum Zitat Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., & Sabri, M. (1991). 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Canadian Journal of Neurological Sciences, 18, 492–498.PubMed Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., & Sabri, M. (1991). 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Canadian Journal of Neurological Sciences, 18, 492–498.PubMed
Zurück zum Zitat Mahoney, D. J., Parise, G., & Tarnopolsky, M. A. (2002). Nutritional and exercise-based therapies in the treatment of mitochondrial disease. Current Opinion in Clinical Nutrition and Metabolic Care, 5, 619–629. doi:10.1097/00075197-200211000-00004.PubMed Mahoney, D. J., Parise, G., & Tarnopolsky, M. A. (2002). Nutritional and exercise-based therapies in the treatment of mitochondrial disease. Current Opinion in Clinical Nutrition and Metabolic Care, 5, 619–629. doi:10.​1097/​00075197-200211000-00004.PubMed
Zurück zum Zitat Matthews, R. T., Yang, L., Jenkins, B. G., Ferrante, R. J., Rosen, B. R., Kaddurah-Daouk, R., et al. (1998). Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. Journal of Neuroscience, 18, 156–163.PubMed Matthews, R. T., Yang, L., Jenkins, B. G., Ferrante, R. J., Rosen, B. R., Kaddurah-Daouk, R., et al. (1998). Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. Journal of Neuroscience, 18, 156–163.PubMed
Zurück zum Zitat Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology, 157, 142–149. doi:10.1006/exnr.1999.7049.PubMed Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology, 157, 142–149. doi:10.​1006/​exnr.​1999.​7049.PubMed
Zurück zum Zitat Mihic, S., MacDonald, J. R., McKenzie, S., & Tarnopolsky, M. A. (2000). Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Medicine and Science in Sports and Exercise, 32, 291–296. doi:10.1097/00005768-200002000-00007.PubMed Mihic, S., MacDonald, J. R., McKenzie, S., & Tarnopolsky, M. A. (2000). Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Medicine and Science in Sports and Exercise, 32, 291–296. doi:10.​1097/​00005768-200002000-00007.PubMed
Zurück zum Zitat O’Gorman, E., Piendl, T., Muller, M., Brdiczka, D., & Wallimann, T. (1997a). Mitochondrial intermembrane inclusion bodies: The common denominator between human mitochondrial myopathies and creatine depletion, due to impairment of cellular energetics. Molecular and Cellular Biochemistry, 174, 283–289. doi:10.1023/A:1006881113149.PubMed O’Gorman, E., Piendl, T., Muller, M., Brdiczka, D., & Wallimann, T. (1997a). Mitochondrial intermembrane inclusion bodies: The common denominator between human mitochondrial myopathies and creatine depletion, due to impairment of cellular energetics. Molecular and Cellular Biochemistry, 174, 283–289. doi:10.​1023/​A:​1006881113149.PubMed
Zurück zum Zitat O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., & Wallimann, T. (1997b). The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Letters, 414, 253–257. doi:10.1016/S0014-5793(97)01045-4.PubMed O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., & Wallimann, T. (1997b). The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Letters, 414, 253–257. doi:10.​1016/​S0014-5793(97)01045-4.PubMed
Zurück zum Zitat Palfi, S., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., et al. (1996). Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. Journal of Neuroscience, 16, 3019–3025.PubMed Palfi, S., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., et al. (1996). Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. Journal of Neuroscience, 16, 3019–3025.PubMed
Zurück zum Zitat Parker, W. D., Jr, Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26, 719–723. doi:10.1002/ana.410260606.PubMed Parker, W. D., Jr, Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26, 719–723. doi:10.​1002/​ana.​410260606.PubMed
Zurück zum Zitat Parker, W. D., Jr. (1991). Cytochrome oxidase deficiency in Alzheimer’s disease. Annals of the New York Academy of Sciences, 640, 59–64.PubMed Parker, W. D., Jr. (1991). Cytochrome oxidase deficiency in Alzheimer’s disease. Annals of the New York Academy of Sciences, 640, 59–64.PubMed
Zurück zum Zitat Peng, T. I., & Greenamyre, J. T. (1998). Privileged access to mitochondria of calcium influx through N-methyl-d-aspartate receptors. Molecular Pharmacology, 53, 974–980.PubMed Peng, T. I., & Greenamyre, J. T. (1998). Privileged access to mitochondria of calcium influx through N-methyl-d-aspartate receptors. Molecular Pharmacology, 53, 974–980.PubMed
Zurück zum Zitat Persky, A. M., & Brazeau, G. A. (2001). Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacological Reviews, 53, 161–176.PubMed Persky, A. M., & Brazeau, G. A. (2001). Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacological Reviews, 53, 161–176.PubMed
Zurück zum Zitat Pettegrew, J. W., Panchalingam, K., Klunk, W. E., McClure, R. J., & Muenz, L. R. (1994). Alterations of cerebral metabolism in probable Alzheimer’s disease: A preliminary study. Neurobiology of Aging, 15, 117–132. doi:10.1016/0197-4580(94)90152-X.PubMed Pettegrew, J. W., Panchalingam, K., Klunk, W. E., McClure, R. J., & Muenz, L. R. (1994). Alterations of cerebral metabolism in probable Alzheimer’s disease: A preliminary study. Neurobiology of Aging, 15, 117–132. doi:10.​1016/​0197-4580(94)90152-X.PubMed
Zurück zum Zitat Poortmans, J. R., Auquier, H., Renaut, V., Durussel, A., Saugy, M., & Brisson, G. R. (1997). Effect of short-term creatine supplementation on renal responses in men. European Journal of Applied Physiology and Occupational Physiology, 76, 566–567. doi:10.1007/s004210050291.PubMed Poortmans, J. R., Auquier, H., Renaut, V., Durussel, A., Saugy, M., & Brisson, G. R. (1997). Effect of short-term creatine supplementation on renal responses in men. European Journal of Applied Physiology and Occupational Physiology, 76, 566–567. doi:10.​1007/​s004210050291.PubMed
Zurück zum Zitat Primeau, A. J., Adhihetty, P. J., & Hood, D. A. (2002). Apoptosis in heart and skeletal muscle. Canadian Journal of Applied Physiology, 27, 349–395.PubMed Primeau, A. J., Adhihetty, P. J., & Hood, D. A. (2002). Apoptosis in heart and skeletal muscle. Canadian Journal of Applied Physiology, 27, 349–395.PubMed
Zurück zum Zitat Rae, C., Digney, A. L., McEwan, S. R., & Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proceedings. Biological Sciences, 270, 2147–2150. doi:10.1098/rspb.2003.2492. Rae, C., Digney, A. L., McEwan, S. R., & Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proceedings. Biological Sciences, 270, 2147–2150. doi:10.​1098/​rspb.​2003.​2492.
Zurück zum Zitat Robinson, T. M., Sewell, D. A., Casey, A., Steenge, G., & Greenhaff, P. L. (2000). Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. British Journal of Sports Medicine, 34, 284–288. doi:10.1136/bjsm.34.4.284.PubMed Robinson, T. M., Sewell, D. A., Casey, A., Steenge, G., & Greenhaff, P. L. (2000). Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. British Journal of Sports Medicine, 34, 284–288. doi:10.​1136/​bjsm.​34.​4.​284.PubMed
Zurück zum Zitat Saks, V. A., Rosenshtraukh, L. V., Smirnov, V. N., & Chazov, E. I. (1978). Role of creatine phosphokinase in cellular function and metabolism. Canadian Journal of Physiology and Pharmacology, 56, 691–706.PubMed Saks, V. A., Rosenshtraukh, L. V., Smirnov, V. N., & Chazov, E. I. (1978). Role of creatine phosphokinase in cellular function and metabolism. Canadian Journal of Physiology and Pharmacology, 56, 691–706.PubMed
Zurück zum Zitat Schlattner, U., Tokarska-Schlattner, M., & Wallimann, T. (2006). Mitochondrial creatine kinase in human health and disease. Biochimica et Biophysica Acta, 1762, 164–180.PubMed Schlattner, U., Tokarska-Schlattner, M., & Wallimann, T. (2006). Mitochondrial creatine kinase in human health and disease. Biochimica et Biophysica Acta, 1762, 164–180.PubMed
Zurück zum Zitat Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399, A23–A31. doi:10.1038/19866.PubMed Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399, A23–A31. doi:10.​1038/​19866.PubMed
Zurück zum Zitat Shefner, J. M., Cudkowicz, M. E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., et al. (2004). A clinical trial of creatine in ALS. Neurology, 63, 1656–1661.PubMed Shefner, J. M., Cudkowicz, M. E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., et al. (2004). A clinical trial of creatine in ALS. Neurology, 63, 1656–1661.PubMed
Zurück zum Zitat Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543. doi:10.1073/pnas.88.23.10540.PubMed Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543. doi:10.​1073/​pnas.​88.​23.​10540.PubMed
Zurück zum Zitat Sora, I., Richman, J., Santoro, G., Wei, H., Wang, Y., Vanderah, T., et al. (1994). The cloning and expression of a human creatine transporter. Biochemical and Biophysical Research Communications, 204, 419–427. doi:10.1006/bbrc.1994.2475.PubMed Sora, I., Richman, J., Santoro, G., Wei, H., Wang, Y., Vanderah, T., et al. (1994). The cloning and expression of a human creatine transporter. Biochemical and Biophysical Research Communications, 204, 419–427. doi:10.​1006/​bbrc.​1994.​2475.PubMed
Zurück zum Zitat Steeghs, K., Benders, A., Oerlemans, F., de, H. A., Heerschap, A., Ruitenbeek, W., et al. (1997). Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell, 89, 93–103. doi:10.1016/S0092-8674(00)80186-5.PubMed Steeghs, K., Benders, A., Oerlemans, F., de, H. A., Heerschap, A., Ruitenbeek, W., et al. (1997). Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell, 89, 93–103. doi:10.​1016/​S0092-8674(00)80186-5.PubMed
Zurück zum Zitat Steenge, G. R., Lambourne, J., Casey, A., Macdonald, I. A., & Greenhaff, P. L. (1998). Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. American Journal of Physiology, 275, E974–E979.PubMed Steenge, G. R., Lambourne, J., Casey, A., Macdonald, I. A., & Greenhaff, P. L. (1998). Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. American Journal of Physiology, 275, E974–E979.PubMed
Zurück zum Zitat Stockler, S., Marescau, B., De Deyn, P. P., Trijbels, J. M., & Hanefeld, F. (1997). Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism, 46, 1189–1193. doi:10.1016/S0026-0495(97)90215-8.PubMed Stockler, S., Marescau, B., De Deyn, P. P., Trijbels, J. M., & Hanefeld, F. (1997). Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism, 46, 1189–1193. doi:10.​1016/​S0026-0495(97)90215-8.PubMed
Zurück zum Zitat Stockler, S., & Hanefeld, F. (1997). Guanidinoacetate methyltransferase deficiency: A newly recognized inborn error of creatine biosynthesis. Wiener Klinische Wochenschrift, 109, 86–88.PubMed Stockler, S., & Hanefeld, F. (1997). Guanidinoacetate methyltransferase deficiency: A newly recognized inborn error of creatine biosynthesis. Wiener Klinische Wochenschrift, 109, 86–88.PubMed
Zurück zum Zitat Streijger, F., Oerlemans, F., Ellenbroek, B. A., Jost, C. R., Wieringa, B., & Van Der Zee, C. E. (2005). Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behavioural Brain Research, 157, 219–234. doi:10.1016/j.bbr.2004.07.002.PubMed Streijger, F., Oerlemans, F., Ellenbroek, B. A., Jost, C. R., Wieringa, B., & Van Der Zee, C. E. (2005). Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behavioural Brain Research, 157, 219–234. doi:10.​1016/​j.​bbr.​2004.​07.​002.PubMed
Zurück zum Zitat Tarnopolsky, M. A., & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Annals of Neurology, 49, 561–574. doi:10.1002/ana.1028.PubMed Tarnopolsky, M. A., & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Annals of Neurology, 49, 561–574. doi:10.​1002/​ana.​1028.PubMed
Zurück zum Zitat Tarnopolsky, M. A., & Safdar, A. (2008). The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Applied Physiology, Nutrition, and Metabolism, 33, 213–227. doi:10.1139/H07-142.PubMed Tarnopolsky, M. A., & Safdar, A. (2008). The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Applied Physiology, Nutrition, and Metabolism, 33, 213–227. doi:10.​1139/​H07-142.PubMed
Zurück zum Zitat Thomas, B., & Beal, M. F. (2007). Parkinson’s disease. Human Molecular Genetics, 16(Spec no. 2), R183–R194.PubMed Thomas, B., & Beal, M. F. (2007). Parkinson’s disease. Human Molecular Genetics, 16(Spec no. 2), R183–R194.PubMed
Zurück zum Zitat Valla, J., Berndt, J. D., & Gonzalez-Lima, F. (2001). Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: Superficial laminar cytochrome oxidase associated with disease duration. Journal of Neuroscience, 21, 4923–4930.PubMed Valla, J., Berndt, J. D., & Gonzalez-Lima, F. (2001). Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: Superficial laminar cytochrome oxidase associated with disease duration. Journal of Neuroscience, 21, 4923–4930.PubMed
Zurück zum Zitat van der Knaap, M. S., Verhoeven, N. M., Maaswinkel-Mooij, P., Pouwels, P. J., Onkenhout, W., Peeters, E. A., et al. (2000). Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Annals of Neurology, 47, 540–543. doi:10.1002/1531-8249(200004)47:4<540::AID-ANA23>3.0.CO;2-K.PubMed van der Knaap, M. S., Verhoeven, N. M., Maaswinkel-Mooij, P., Pouwels, P. J., Onkenhout, W., Peeters, E. A., et al. (2000). Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Annals of Neurology, 47, 540–543. doi:10.1002/1531-8249(200004)47:4<540::AID-ANA23>3.0.CO;2-K.PubMed
Zurück zum Zitat Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal, 281(Pt 1), 21–40.PubMed Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal, 281(Pt 1), 21–40.PubMed
Zurück zum Zitat Wallimann, T., & Hemmer, W. (1994). Creatine kinase in non-muscle tissues and cells. Molecular and Cellular Biochemistry, 133–134, 193–220. doi:10.1007/BF01267955.PubMed Wallimann, T., & Hemmer, W. (1994). Creatine kinase in non-muscle tissues and cells. Molecular and Cellular Biochemistry, 133–134, 193–220. doi:10.​1007/​BF01267955.PubMed
Zurück zum Zitat Weydt, P., Pineda, V. V., Torrence, A. E., Libby, R. T., Satterfield, T. F., Lazarowski, E. R., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism, 4, 349–362. doi:10.1016/j.cmet.2006.10.004.PubMed Weydt, P., Pineda, V. V., Torrence, A. E., Libby, R. T., Satterfield, T. F., Lazarowski, E. R., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism, 4, 349–362. doi:10.​1016/​j.​cmet.​2006.​10.​004.PubMed
Zurück zum Zitat Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–1116. doi:10.1016/0896-6273(95)90259-7.PubMed Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–1116. doi:10.​1016/​0896-6273(95)90259-7.PubMed
Zurück zum Zitat Wyss, M., & Schulze, A. (2002). Health implications of creatine: Can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience, 112, 243–260. doi:10.1016/S0306-4522(02)00088-X.PubMed Wyss, M., & Schulze, A. (2002). Health implications of creatine: Can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience, 112, 243–260. doi:10.​1016/​S0306-4522(02)00088-X.PubMed
Zurück zum Zitat Zong, H., Ren, J. M., Young, L. H., Pypaert, M., Mu, J., Birnbaum, M. J., et al. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 99, 15983–15987. doi:10.1073/pnas.252625599.PubMed Zong, H., Ren, J. M., Young, L. H., Pypaert, M., Mu, J., Birnbaum, M. J., et al. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 99, 15983–15987. doi:10.​1073/​pnas.​252625599.PubMed
Metadaten
Titel
Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases
verfasst von
Peter J. Adhihetty
M. Flint Beal
Publikationsdatum
01.12.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8053-y

Weitere Artikel der Ausgabe 4/2008

NeuroMolecular Medicine 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.