Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2016

21.05.2016 | Review Paper

Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases

verfasst von: Hwa Jeong You, Jae Hyon Park, Helios Pareja-Galeano, Alejandro Lucia, Jae Il Shin

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Neurodegenerative diseases are becoming an ever-increasing problem in aging populations. Low levels of brain-derived neurotrophic factor (BDNF) have previously been associated with the pathogenesis of numerous neurodegenerative diseases. Recently, microRNAs (miRNAs) have been proposed as potential novel therapeutic targets for treating various diseases of the central nervous system (CNS), and interestingly, few studies have reported several miRNAs that downregulate the expression levels of BDNF. However, substantial challenges exist when attempting to translate these findings into practical anti-miRNA therapeutics, especially when the targets remain inside the CNS. Thus, in this review, we summarize the specific molecular mechanisms by which several miRNAs negatively modulate the expressions of BDNF, address the potential clinical difficulties that can be faced during the development of anti-miRNA-based therapeutics and propose strategies to overcome these challenges.
Literatur
Zurück zum Zitat Angelucci, F., Piermaria, J., Gelfo, F., Shofany, J., Tramontano, M., Fiore, M., et al. (2016). The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Canadian Journal of Physiology and Pharmacology. doi:10.1139/cjpp-2015-0322.PubMed Angelucci, F., Piermaria, J., Gelfo, F., Shofany, J., Tramontano, M., Fiore, M., et al. (2016). The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Canadian Journal of Physiology and Pharmacology. doi:10.​1139/​cjpp-2015-0322.PubMed
Zurück zum Zitat Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A., & Cotman, C. W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience, 14(12), 1992–2002.CrossRefPubMed Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A., & Cotman, C. W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience, 14(12), 1992–2002.CrossRefPubMed
Zurück zum Zitat Bibel, M., & Barde, Y.-A. (2000). Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes & Development, 14(23), 2919–2937.CrossRef Bibel, M., & Barde, Y.-A. (2000). Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes & Development, 14(23), 2919–2937.CrossRef
Zurück zum Zitat Caputo, V., Sinibaldi, L., Fiorentino, A., Parisi, C., Catalanotto, C., Pasini, A., et al. (2011). Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoS One, 6(12), e28656.CrossRefPubMedPubMedCentral Caputo, V., Sinibaldi, L., Fiorentino, A., Parisi, C., Catalanotto, C., Pasini, A., et al. (2011). Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoS One, 6(12), e28656.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease, 14(1), 27–41.PubMed Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease, 14(1), 27–41.PubMed
Zurück zum Zitat Colbert, L. H., Visser, M., Simonsick, E. M., Tracy, R. P., Newman, A. B., Kritchevsky, S. B., et al. (2004). Physical activity, exercise, and inflammatory markers in older adults: Findings from the Health, Aging and Body Composition Study. Journal of the American Geriatrics Society, 52(7), 1098–1104. doi:10.1111/j.1532-5415.2004.52307.x.CrossRefPubMed Colbert, L. H., Visser, M., Simonsick, E. M., Tracy, R. P., Newman, A. B., Kritchevsky, S. B., et al. (2004). Physical activity, exercise, and inflammatory markers in older adults: Findings from the Health, Aging and Body Composition Study. Journal of the American Geriatrics Society, 52(7), 1098–1104. doi:10.​1111/​j.​1532-5415.​2004.​52307.​x.CrossRefPubMed
Zurück zum Zitat Cruickshank, T. M., Thompson, J. A., Dominguez, D. J., Reyes, A. P., Bynevelt, M., Georgiou-Karistianis, N., et al. (2015). The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: An exploratory study. Brain and Behavior, 5(2), e00312. doi:10.1002/brb3.312.CrossRefPubMedPubMedCentral Cruickshank, T. M., Thompson, J. A., Dominguez, D. J., Reyes, A. P., Bynevelt, M., Georgiou-Karistianis, N., et al. (2015). The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: An exploratory study. Brain and Behavior, 5(2), e00312. doi:10.​1002/​brb3.​312.CrossRefPubMedPubMedCentral
Zurück zum Zitat Davis, S., Propp, S., Freier, S. M., Jones, L. E., Serra, M. J., Kinberger, G., et al. (2009). Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Research, 37(1), 70–77.CrossRefPubMed Davis, S., Propp, S., Freier, S. M., Jones, L. E., Serra, M. J., Kinberger, G., et al. (2009). Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Research, 37(1), 70–77.CrossRefPubMed
Zurück zum Zitat de Fougerolles, A., Vornlocher, H. P., Maraganore, J., & Lieberman, J. (2007). Interfering with disease: A progress report on siRNA-based therapeutics. Nature Reviews Drug Discovery, 6(6), 443–453. doi:10.1038/nrd2310.CrossRefPubMed de Fougerolles, A., Vornlocher, H. P., Maraganore, J., & Lieberman, J. (2007). Interfering with disease: A progress report on siRNA-based therapeutics. Nature Reviews Drug Discovery, 6(6), 443–453. doi:10.​1038/​nrd2310.CrossRefPubMed
Zurück zum Zitat Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140(3), 823–833. doi:10.1016/j.neuroscience.2006.02.084.CrossRefPubMed Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140(3), 823–833. doi:10.​1016/​j.​neuroscience.​2006.​02.​084.CrossRefPubMed
Zurück zum Zitat Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences USA, 108(7), 3017–3022. doi:10.1073/pnas.1015950108.CrossRef Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences USA, 108(7), 3017–3022. doi:10.​1073/​pnas.​1015950108.CrossRef
Zurück zum Zitat Ferrer, I., Goutan, E., Marin, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866(1–2), 257–261.CrossRefPubMed Ferrer, I., Goutan, E., Marin, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866(1–2), 257–261.CrossRefPubMed
Zurück zum Zitat Fukuda, T., Itoh, M., Ichikawa, T., Washiyama, K., & Goto, Y. (2005). Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. Journal of Neuropathology and Experimental Neurology, 64(6), 537–544.CrossRefPubMed Fukuda, T., Itoh, M., Ichikawa, T., Washiyama, K., & Goto, Y. (2005). Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. Journal of Neuropathology and Experimental Neurology, 64(6), 537–544.CrossRefPubMed
Zurück zum Zitat Gao, J., Wang, W.-Y., Mao, Y.-W., Gräff, J., Guan, J.-S., Pan, L., et al. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 466(7310), 1105–1109.CrossRefPubMedPubMedCentral Gao, J., Wang, W.-Y., Mao, Y.-W., Gräff, J., Guan, J.-S., Pan, L., et al. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 466(7310), 1105–1109.CrossRefPubMedPubMedCentral
Zurück zum Zitat Georges, M., Coppieters, W., & Charlier, C. (2007). Polymorphic miRNA-mediated gene regulation: Contribution to phenotypic variation and disease. Current Opinion in Genetics & Development, 17(3), 166–176.CrossRef Georges, M., Coppieters, W., & Charlier, C. (2007). Polymorphic miRNA-mediated gene regulation: Contribution to phenotypic variation and disease. Current Opinion in Genetics & Development, 17(3), 166–176.CrossRef
Zurück zum Zitat Gomez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Edgerton, V. R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88(5), 2187–2195. doi:10.1152/jn.00152.2002.CrossRefPubMed Gomez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Edgerton, V. R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88(5), 2187–2195. doi:10.​1152/​jn.​00152.​2002.CrossRefPubMed
Zurück zum Zitat Guidi, M., Muinos-Gimeno, M., Kagerbauer, B., Marti, E., Estivill, X., & Espinosa-Parrilla, Y. (2010). Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Molecular Biology, 11, 95. doi:10.1186/1471-2199-11-95.CrossRefPubMedPubMedCentral Guidi, M., Muinos-Gimeno, M., Kagerbauer, B., Marti, E., Estivill, X., & Espinosa-Parrilla, Y. (2010). Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Molecular Biology, 11, 95. doi:10.​1186/​1471-2199-11-95.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524.CrossRefPubMed Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524.CrossRefPubMed
Zurück zum Zitat Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., et al. (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biology, 7(11), e1000238.CrossRefPubMedPubMedCentral Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., et al. (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biology, 7(11), e1000238.CrossRefPubMedPubMedCentral
Zurück zum Zitat Herman, T., Giladi, N., & Hausdorff, J. M. (2009). Treadmill training for the treatment of gait disturbances in people with Parkinson’s disease: A mini-review. J Neural Transm (Vienna), 116(3), 307–318. doi:10.1007/s00702-008-0139-z.CrossRef Herman, T., Giladi, N., & Hausdorff, J. M. (2009). Treadmill training for the treatment of gait disturbances in people with Parkinson’s disease: A mini-review. J Neural Transm (Vienna), 116(3), 307–318. doi:10.​1007/​s00702-008-0139-z.CrossRef
Zurück zum Zitat Hernandez, S. S., Sandreschi, P. F., da Silva, F. C., Arancibia, B. A., da Silva, R., Gutierres, P. J., et al. (2015). What are the benefits of exercise for Alzheimer’s disease? A systematic review of the past 10 years. Journal of Aging, Physical Activity, 23(4), 659–668. doi:10.1123/japa.2014-0180.CrossRef Hernandez, S. S., Sandreschi, P. F., da Silva, F. C., Arancibia, B. A., da Silva, R., Gutierres, P. J., et al. (2015). What are the benefits of exercise for Alzheimer’s disease? A systematic review of the past 10 years. Journal of Aging, Physical Activity, 23(4), 659–668. doi:10.​1123/​japa.​2014-0180.CrossRef
Zurück zum Zitat Hutvágner, G., Simard, M. J., Mello, C. C., & Zamore, P. D. (2004). Sequence-specific inhibition of small RNA function. PLoS Biology, 2(4), e98.CrossRefPubMedPubMedCentral Hutvágner, G., Simard, M. J., Mello, C. C., & Zamore, P. D. (2004). Sequence-specific inhibition of small RNA function. PLoS Biology, 2(4), e98.CrossRefPubMedPubMedCentral
Zurück zum Zitat Im, H.-I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127.CrossRefPubMedPubMedCentral Im, H.-I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jimenez-Mateos, E. M., Engel, T., Merino-Serrais, P., McKiernan, R. C., Tanaka, K., Mouri, G., et al. (2012). Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 18(7), 1087–1094. doi:10.1038/nm.2834.CrossRefPubMedPubMedCentral Jimenez-Mateos, E. M., Engel, T., Merino-Serrais, P., McKiernan, R. C., Tanaka, K., Mouri, G., et al. (2012). Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 18(7), 1087–1094. doi:10.​1038/​nm.​2834.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jugloff, D. G., Jung, B. P., Purushotham, D., Logan, R., & Eubanks, J. H. (2005). Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2. Neurobiology of Diseases, 19(1–2), 18–27. doi:10.1016/j.nbd.2004.11.002.CrossRef Jugloff, D. G., Jung, B. P., Purushotham, D., Logan, R., & Eubanks, J. H. (2005). Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2. Neurobiology of Diseases, 19(1–2), 18–27. doi:10.​1016/​j.​nbd.​2004.​11.​002.CrossRef
Zurück zum Zitat Karege, F., Schwald, M., & Cisse, M. (2002). Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience Letters, 328(3), 261–264.CrossRefPubMed Karege, F., Schwald, M., & Cisse, M. (2002). Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience Letters, 328(3), 261–264.CrossRefPubMed
Zurück zum Zitat Keifer, J., Zheng, Z., & Ambigapathy, G. (2015). A MicroRNA-BDNF negative feedback signaling loop in brain: Implications for Alzheimer’s disease. MicroRNA, 4(2), 101–108.CrossRefPubMed Keifer, J., Zheng, Z., & Ambigapathy, G. (2015). A MicroRNA-BDNF negative feedback signaling loop in brain: Implications for Alzheimer’s disease. MicroRNA, 4(2), 101–108.CrossRefPubMed
Zurück zum Zitat Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514.CrossRefPubMed Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514.CrossRefPubMed
Zurück zum Zitat Kocerha, J., Kauppinen, S., & Wahlestedt, C. (2009). microRNAs in CNS disorders. Neuromolecular Medicine, 11(3), 162–172.CrossRefPubMed Kocerha, J., Kauppinen, S., & Wahlestedt, C. (2009). microRNAs in CNS disorders. Neuromolecular Medicine, 11(3), 162–172.CrossRefPubMed
Zurück zum Zitat Kolbeck, R., Bartke, I., Eberle, W., & Barde, Y. A. (1999). Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. Journal of Neurochemistry, 72(5), 1930–1938.CrossRefPubMed Kolbeck, R., Bartke, I., Eberle, W., & Barde, Y. A. (1999). Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. Journal of Neurochemistry, 72(5), 1930–1938.CrossRefPubMed
Zurück zum Zitat Konopka, W., Kiryk, A., Novak, M., Herwerth, M., Parkitna, J. R., Wawrzyniak, M., et al. (2010). MicroRNA loss enhances learning and memory in mice. The Journal of Neuroscience, 30(44), 14835–14842.CrossRefPubMed Konopka, W., Kiryk, A., Novak, M., Herwerth, M., Parkitna, J. R., Wawrzyniak, M., et al. (2010). MicroRNA loss enhances learning and memory in mice. The Journal of Neuroscience, 30(44), 14835–14842.CrossRefPubMed
Zurück zum Zitat Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J., et al. (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell, 141(4), 618–631. doi:10.1016/j.cell.2010.03.039.CrossRefPubMed Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J., et al. (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell, 141(4), 618–631. doi:10.​1016/​j.​cell.​2010.​03.​039.CrossRefPubMed
Zurück zum Zitat Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689. doi:10.1038/nature04303.CrossRefPubMed Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689. doi:10.​1038/​nature04303.CrossRefPubMed
Zurück zum Zitat Lee, S. T., Chu, K., Jung, K. H., Kim, J. H., Huh, J. Y., Yoon, H., et al. (2012). miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Annals of Neurology, 72(2), 269–277.CrossRefPubMed Lee, S. T., Chu, K., Jung, K. H., Kim, J. H., Huh, J. Y., Yoon, H., et al. (2012). miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Annals of Neurology, 72(2), 269–277.CrossRefPubMed
Zurück zum Zitat Lima, L. O., Scianni, A., & Rodrigues-de-Paula, F. (2013). Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: A systematic review. Journal of Physiotherapy, 59(1), 7–13. doi:10.1016/S1836-9553(13)70141-3.CrossRefPubMed Lima, L. O., Scianni, A., & Rodrigues-de-Paula, F. (2013). Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: A systematic review. Journal of Physiotherapy, 59(1), 7–13. doi:10.​1016/​S1836-9553(13)70141-3.CrossRefPubMed
Zurück zum Zitat Lindvall, O., Kokaia, Z., Bengzon, J., Elmer, E., & Kokaia, M. (1994). Neurotrophins and brain insults. Trends in Neurosciences, 17(11), 490–496.CrossRefPubMed Lindvall, O., Kokaia, Z., Bengzon, J., Elmer, E., & Kokaia, M. (1994). Neurotrophins and brain insults. Trends in Neurosciences, 17(11), 490–496.CrossRefPubMed
Zurück zum Zitat Liu, D.-Y., Shen, X.-M., Yuan, F.-F., Guo, O.-Y., Zhong, Y., Chen, J.-G., et al. (2014). The physiology of BDNF and its relationship with ADHD. Molecular Neurobiology, 52(3), 1467–1476.CrossRefPubMed Liu, D.-Y., Shen, X.-M., Yuan, F.-F., Guo, O.-Y., Zhong, Y., Chen, J.-G., et al. (2014). The physiology of BDNF and its relationship with ADHD. Molecular Neurobiology, 52(3), 1467–1476.CrossRefPubMed
Zurück zum Zitat Lu, B., Nagappan, G., Guan, X., Nathan, P. J., & Wren, P. (2013). BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews Neuroscience, 14(6), 401–416.CrossRefPubMed Lu, B., Nagappan, G., Guan, X., Nathan, P. J., & Wren, P. (2013). BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews Neuroscience, 14(6), 401–416.CrossRefPubMed
Zurück zum Zitat Lu, B., Pang, P. T., & Woo, N. H. (2005). The yin and yang of neurotrophin action. Nature Reviews Neuroscience, 6(8), 603–614.CrossRefPubMed Lu, B., Pang, P. T., & Woo, N. H. (2005). The yin and yang of neurotrophin action. Nature Reviews Neuroscience, 6(8), 603–614.CrossRefPubMed
Zurück zum Zitat Maes, O. C., Chertkow, H. M., Wang, E., & Schipper, H. M. (2009). MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Current Genomics, 10(3), 154.CrossRefPubMedPubMedCentral Maes, O. C., Chertkow, H. M., Wang, E., & Schipper, H. M. (2009). MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Current Genomics, 10(3), 154.CrossRefPubMedPubMedCentral
Zurück zum Zitat Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., et al. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron, 5(4), 501–509.CrossRefPubMed Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., et al. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron, 5(4), 501–509.CrossRefPubMed
Zurück zum Zitat Marti, E., Pantano, L., Banez-Coronel, M., Llorens, F., Minones-Moyano, E., Porta, S., et al. (2010). A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Research, 38(20), 7219–7235. doi:10.1093/nar/gkq575.CrossRefPubMedPubMedCentral Marti, E., Pantano, L., Banez-Coronel, M., Llorens, F., Minones-Moyano, E., Porta, S., et al. (2010). A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Research, 38(20), 7219–7235. doi:10.​1093/​nar/​gkq575.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mellios, N., Huang, H.-S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.CrossRefPubMedPubMedCentral Mellios, N., Huang, H.-S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.CrossRefPubMedPubMedCentral
Zurück zum Zitat Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71–124.CrossRefPubMed Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71–124.CrossRefPubMed
Zurück zum Zitat Nagahara, A. H., & Tuszynski, M. H. (2011). Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Reviews Drug Discovery, 10(3), 209–219.CrossRefPubMed Nagahara, A. H., & Tuszynski, M. H. (2011). Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Reviews Drug Discovery, 10(3), 209–219.CrossRefPubMed
Zurück zum Zitat Narisawa-Saito, M., Wakabayashi, K., Tsuji, S., Takahashi, H., & Nawa, H. (1996). Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport, 7(18), 2925–2928.CrossRefPubMed Narisawa-Saito, M., Wakabayashi, K., Tsuji, S., Takahashi, H., & Nawa, H. (1996). Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport, 7(18), 2925–2928.CrossRefPubMed
Zurück zum Zitat Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., et al. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306(5695), 487–491. doi:10.1126/science.1100135.CrossRefPubMed Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., et al. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306(5695), 487–491. doi:10.​1126/​science.​1100135.CrossRefPubMed
Zurück zum Zitat Peedicayil, J. (2015). Epigenetic targets for the treatment of neurodegenerative diseases. Clinical Pharmacology and Therapeutics,. doi:10.1002/cpt.323. Peedicayil, J. (2015). Epigenetic targets for the treatment of neurodegenerative diseases. Clinical Pharmacology and Therapeutics,. doi:10.​1002/​cpt.​323.
Zurück zum Zitat Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93(6), 1412–1421. doi:10.1111/j.1471-4159.2005.03135.x.CrossRefPubMed Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93(6), 1412–1421. doi:10.​1111/​j.​1471-4159.​2005.​03135.​x.CrossRefPubMed
Zurück zum Zitat Petersen, M., Bondensgaard, K., Wengel, J., & Jacobsen, J. P. (2002). Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA: RNA hybrids. Journal of the American Chemical Society, 124(21), 5974–5982.CrossRefPubMed Petersen, M., Bondensgaard, K., Wengel, J., & Jacobsen, J. P. (2002). Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA: RNA hybrids. Journal of the American Chemical Society, 124(21), 5974–5982.CrossRefPubMed
Zurück zum Zitat Petersen, M., & Wengel, J. (2003). LNA: A versatile tool for therapeutics and genomics. Trends in Biotechnology, 21(2), 74–81.CrossRefPubMed Petersen, M., & Wengel, J. (2003). LNA: A versatile tool for therapeutics and genomics. Trends in Biotechnology, 21(2), 74–81.CrossRefPubMed
Zurück zum Zitat Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7(5), 695–702.CrossRefPubMed Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7(5), 695–702.CrossRefPubMed
Zurück zum Zitat Remenyi, J., Hunter, C., Cole, C., Ando, H., Impey, S., Monk, C., et al. (2010). Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochemical Journal, 428, 281–291.CrossRefPubMed Remenyi, J., Hunter, C., Cole, C., Ando, H., Impey, S., Monk, C., et al. (2010). Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochemical Journal, 428, 281–291.CrossRefPubMed
Zurück zum Zitat Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.CrossRefPubMed Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.CrossRefPubMed
Zurück zum Zitat Sethi, P., & Lukiw, W. J. (2009). Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Letters, 459(2), 100–104.CrossRefPubMed Sethi, P., & Lukiw, W. J. (2009). Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Letters, 459(2), 100–104.CrossRefPubMed
Zurück zum Zitat Sethupathy, P., Borel, C., Gagnebin, M., Grant, G. R., Deutsch, S., Elton, T. S., et al. (2007). Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. The American Journal of Human Genetics, 81(2), 405–413.CrossRefPubMed Sethupathy, P., Borel, C., Gagnebin, M., Grant, G. R., Deutsch, S., Elton, T. S., et al. (2007). Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. The American Journal of Human Genetics, 81(2), 405–413.CrossRefPubMed
Zurück zum Zitat Sheinerman, K. S., Tsivinsky, V. G., Crawford, F., Mullan, M. J., Abdullah, L., & Umansky, S. R. (2012). Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY), 4(9), 590.CrossRef Sheinerman, K. S., Tsivinsky, V. G., Crawford, F., Mullan, M. J., Abdullah, L., & Umansky, S. R. (2012). Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY), 4(9), 590.CrossRef
Zurück zum Zitat Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., Ockene, J. K., et al. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: The Women’s Health Initiative Memory Study—a randomized controlled trial. JAMA, 289(20), 2651–2662. doi:10.1001/jama.289.20.2651.CrossRefPubMed Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., Ockene, J. K., et al. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: The Women’s Health Initiative Memory Study—a randomized controlled trial. JAMA, 289(20), 2651–2662. doi:10.​1001/​jama.​289.​20.​2651.CrossRefPubMed
Zurück zum Zitat Solum, D. T., & Handa, R. J. (2002). Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. Journal of Neuroscience, 22(7), 2650–2659.PubMed Solum, D. T., & Handa, R. J. (2002). Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. Journal of Neuroscience, 22(7), 2650–2659.PubMed
Zurück zum Zitat Tapia-Arancibia, L., Rage, F., Givalois, L., & Arancibia, S. (2004). Physiology of BDNF: Focus on hypothalamic function. Frontiers in Neuroendocrinology, 25(2), 77–107.CrossRefPubMed Tapia-Arancibia, L., Rage, F., Givalois, L., & Arancibia, S. (2004). Physiology of BDNF: Focus on hypothalamic function. Frontiers in Neuroendocrinology, 25(2), 77–107.CrossRefPubMed
Zurück zum Zitat Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the USA, 105(26), 9093–9098. doi:10.1073/pnas.0803072105.CrossRefPubMedPubMedCentral Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the USA, 105(26), 9093–9098. doi:10.​1073/​pnas.​0803072105.CrossRefPubMedPubMedCentral
Zurück zum Zitat Widenfalk, J., Olson, L., & Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34(3), 125–132.CrossRefPubMed Widenfalk, J., Olson, L., & Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34(3), 125–132.CrossRefPubMed
Zurück zum Zitat Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., et al. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6(7), 736–742. doi:10.1038/nn1073.CrossRefPubMedPubMedCentral Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., et al. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6(7), 736–742. doi:10.​1038/​nn1073.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yaffe, K., Krueger, K., Cummings, S. R., Blackwell, T., Henderson, V. W., Sarkar, S., et al. (2005). Effect of raloxifene on prevention of dementia and cognitive impairment in older women: The Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. American Journal of Psychiatry, 162(4), 683–690. doi:10.1176/appi.ajp.162.4.683.CrossRefPubMed Yaffe, K., Krueger, K., Cummings, S. R., Blackwell, T., Henderson, V. W., Sarkar, S., et al. (2005). Effect of raloxifene on prevention of dementia and cognitive impairment in older women: The Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. American Journal of Psychiatry, 162(4), 683–690. doi:10.​1176/​appi.​ajp.​162.​4.​683.CrossRefPubMed
Zurück zum Zitat Yamashita, T., Tucker, K. L., & Barde, Y. A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24(3), 585–593.CrossRefPubMed Yamashita, T., Tucker, K. L., & Barde, Y. A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24(3), 585–593.CrossRefPubMed
Zurück zum Zitat Yang, G., Song, Y., Zhou, X., Deng, Y., Liu, T., Weng, G., et al. (2015). DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Molecular Medicine Reports, 12(1), 1435–1442. doi:10.3892/mmr.2015.3531.PubMed Yang, G., Song, Y., Zhou, X., Deng, Y., Liu, T., Weng, G., et al. (2015). DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Molecular Medicine Reports, 12(1), 1435–1442. doi:10.​3892/​mmr.​2015.​3531.PubMed
Zurück zum Zitat Yuan, X. B., Jin, M., Xu, X., Song, Y. Q., Wu, C. P., Poo, M. M., et al. (2003). Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biology, 5(1), 38–45. doi:10.1038/ncb895.CrossRefPubMed Yuan, X. B., Jin, M., Xu, X., Song, Y. Q., Wu, C. P., Poo, M. M., et al. (2003). Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biology, 5(1), 38–45. doi:10.​1038/​ncb895.CrossRefPubMed
Zurück zum Zitat Zhao, Y.-N., Li, W.-F., Li, F., Zhang, Z., Dai, Y.-D., Xu, A.-L., et al. (2013). Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochemical and Biophysical Research Communications, 435(4), 597–602. doi:10.1016/j.bbrc.2013.05.025.CrossRefPubMed Zhao, Y.-N., Li, W.-F., Li, F., Zhang, Z., Dai, Y.-D., Xu, A.-L., et al. (2013). Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochemical and Biophysical Research Communications, 435(4), 597–602. doi:10.​1016/​j.​bbrc.​2013.​05.​025.CrossRefPubMed
Zurück zum Zitat Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293(5529), 493–498. doi:10.1126/science.1059581.CrossRefPubMed Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293(5529), 493–498. doi:10.​1126/​science.​1059581.CrossRefPubMed
Metadaten
Titel
Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases
verfasst von
Hwa Jeong You
Jae Hyon Park
Helios Pareja-Galeano
Alejandro Lucia
Jae Il Shin
Publikationsdatum
21.05.2016
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2016
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-016-8407-9

Weitere Artikel der Ausgabe 4/2016

NeuroMolecular Medicine 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.