Skip to main content
Erschienen in: Clinical Reviews in Bone and Mineral Metabolism 1/2009

01.03.2009 | Original Paper

The Functional Metabolism and Molecular Biology of Vitamin D Action

verfasst von: Lori A. Plum, Hector F. DeLuca

Erschienen in: Clinical & Translational Metabolism | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

The evolution of our understanding of the biological impact of vitamin D is briefly reviewed, with a focus on the physiology and endocrinology of the vitamin D system. This chapter attempts to bring the molecular discoveries in vitamin D metabolism and mechanisms of action into focus on known physiology and endocrinology. The latest developments on metabolism of vitamin D, the enzymes involved, and the genes responsible are presented. The impact of the molecular discoveries on current views of the importance of vitamin D in public health is also presented.
Literatur
1.
Zurück zum Zitat Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12. Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12.
2.
Zurück zum Zitat McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312. McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312.
3.
Zurück zum Zitat Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3. Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3.
4.
Zurück zum Zitat Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923. Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923.
5.
Zurück zum Zitat Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37. Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37.
6.
Zurück zum Zitat Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266. Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266.
7.
Zurück zum Zitat Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22. Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22.
8.
Zurück zum Zitat Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9.PubMed Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9.PubMed
9.
Zurück zum Zitat Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22.PubMed Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22.PubMed
10.
Zurück zum Zitat Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82.PubMedCrossRef Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82.PubMedCrossRef
11.
Zurück zum Zitat Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60.PubMed Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60.PubMed
12.
Zurück zum Zitat Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.PubMedCrossRef Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.PubMedCrossRef
13.
Zurück zum Zitat Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.PubMedCrossRef Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.PubMedCrossRef
14.
Zurück zum Zitat Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70.PubMedCrossRef Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70.PubMedCrossRef
15.
Zurück zum Zitat Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7.PubMedCrossRef Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7.PubMedCrossRef
16.
Zurück zum Zitat Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.PubMedCrossRef Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.PubMedCrossRef
17.
Zurück zum Zitat Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43.PubMedCrossRef Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43.PubMedCrossRef
18.
Zurück zum Zitat Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9.PubMedCrossRef Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9.PubMedCrossRef
19.
Zurück zum Zitat Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304.PubMed Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304.PubMed
20.
Zurück zum Zitat Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91.PubMed Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91.PubMed
21.
Zurück zum Zitat Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.PubMed Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.PubMed
22.
Zurück zum Zitat Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35.CrossRef Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35.CrossRef
23.
Zurück zum Zitat Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620.PubMed Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620.PubMed
24.
Zurück zum Zitat Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201.PubMedCrossRef Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201.PubMedCrossRef
25.
Zurück zum Zitat Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82. Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82.
26.
27.
Zurück zum Zitat Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8. Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8.
28.
Zurück zum Zitat DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm. 1967;25:315–67.PubMedCrossRef DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm. 1967;25:315–67.PubMedCrossRef
29.
30.
Zurück zum Zitat Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62.PubMed Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62.PubMed
31.
Zurück zum Zitat Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5. Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5.
32.
Zurück zum Zitat Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48.PubMedCrossRef Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48.PubMedCrossRef
33.
Zurück zum Zitat Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8.PubMed Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8.PubMed
34.
Zurück zum Zitat Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4.PubMedCrossRef Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4.PubMedCrossRef
35.
Zurück zum Zitat Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210. Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210.
36.
Zurück zum Zitat Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60.PubMed Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60.PubMed
37.
Zurück zum Zitat Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30. Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30.
38.
Zurück zum Zitat Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12. Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12.
39.
Zurück zum Zitat Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86.CrossRef Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86.CrossRef
40.
Zurück zum Zitat Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.PubMedCrossRef Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.PubMedCrossRef
41.
Zurück zum Zitat Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20.PubMedCrossRef Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20.PubMedCrossRef
42.
Zurück zum Zitat Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6.PubMedCrossRef Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6.PubMedCrossRef
43.
Zurück zum Zitat Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12.CrossRef Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12.CrossRef
44.
Zurück zum Zitat Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68.PubMed Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68.PubMed
45.
Zurück zum Zitat Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13.PubMedCrossRef Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13.PubMedCrossRef
46.
Zurück zum Zitat Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34.PubMedCrossRef Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34.PubMedCrossRef
47.
Zurück zum Zitat Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101.PubMedCrossRef Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101.PubMedCrossRef
48.
Zurück zum Zitat Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.PubMedCrossRef Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.PubMedCrossRef
49.
Zurück zum Zitat DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79. DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79.
50.
Zurück zum Zitat DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511. DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511.
51.
Zurück zum Zitat Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5).PubMedCrossRef Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5).PubMedCrossRef
52.
Zurück zum Zitat Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658.
53.
Zurück zum Zitat Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23.CrossRef Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23.CrossRef
54.
Zurück zum Zitat Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7.PubMedCrossRef Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7.PubMedCrossRef
55.
Zurück zum Zitat Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21.PubMedCrossRef Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21.PubMedCrossRef
56.
Zurück zum Zitat Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44.PubMed Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44.PubMed
57.
Zurück zum Zitat DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9.PubMed DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9.PubMed
58.
Zurück zum Zitat Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.PubMed Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.PubMed
59.
Zurück zum Zitat Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70. Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70.
60.
Zurück zum Zitat Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6.PubMedCrossRef Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6.PubMedCrossRef
61.
Zurück zum Zitat Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3. Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3.
62.
Zurück zum Zitat Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4. Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4.
63.
Zurück zum Zitat Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74.PubMed Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74.PubMed
64.
Zurück zum Zitat Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408.PubMedCrossRef Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408.PubMedCrossRef
65.
Zurück zum Zitat Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6.CrossRef Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6.CrossRef
66.
Zurück zum Zitat Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73.PubMedCrossRef Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73.PubMedCrossRef
67.
Zurück zum Zitat Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72.PubMedCrossRef Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72.PubMedCrossRef
68.
Zurück zum Zitat Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30.PubMedCrossRef Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30.PubMedCrossRef
69.
Zurück zum Zitat Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.PubMedCrossRef Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.PubMedCrossRef
70.
Zurück zum Zitat Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.PubMedCrossRef Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.PubMedCrossRef
71.
Zurück zum Zitat Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18.PubMedCrossRef Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18.PubMedCrossRef
72.
Zurück zum Zitat Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6.PubMedCrossRef Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6.PubMedCrossRef
73.
Zurück zum Zitat Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4.PubMedCrossRef Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4.PubMedCrossRef
74.
Zurück zum Zitat Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8.PubMed Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8.PubMed
75.
Zurück zum Zitat Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7.PubMedCrossRef Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7.PubMedCrossRef
76.
Zurück zum Zitat Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91.PubMedCrossRef Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91.PubMedCrossRef
77.
Zurück zum Zitat Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.PubMedCrossRef Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.PubMedCrossRef
78.
Zurück zum Zitat Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503.PubMedCrossRef Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503.PubMedCrossRef
79.
Zurück zum Zitat Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S.PubMedCrossRef Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S.PubMedCrossRef
80.
Zurück zum Zitat Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92.PubMedCrossRef Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92.PubMedCrossRef
81.
Zurück zum Zitat Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400. Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400.
82.
Zurück zum Zitat Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.PubMed Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.PubMed
83.
Zurück zum Zitat Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10.PubMedCrossRef Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10.PubMedCrossRef
84.
Zurück zum Zitat Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7.PubMed Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7.PubMed
85.
Zurück zum Zitat Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50.PubMedCrossRef Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50.PubMedCrossRef
86.
Zurück zum Zitat Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80.PubMedCrossRef Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80.PubMedCrossRef
87.
Zurück zum Zitat Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6.PubMed Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6.PubMed
88.
Zurück zum Zitat Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.PubMedCrossRef Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.PubMedCrossRef
89.
Zurück zum Zitat Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43.PubMedCrossRef Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43.PubMedCrossRef
90.
Zurück zum Zitat Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72.PubMedCrossRef Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72.PubMedCrossRef
91.
Zurück zum Zitat Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.PubMed Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.PubMed
92.
Zurück zum Zitat Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.PubMedCrossRef Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.PubMedCrossRef
93.
Zurück zum Zitat Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8.CrossRef Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8.CrossRef
94.
Zurück zum Zitat Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30.PubMedCrossRef Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30.PubMedCrossRef
95.
Zurück zum Zitat Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13.CrossRef Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13.CrossRef
96.
Zurück zum Zitat Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9.PubMedCrossRef Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9.PubMedCrossRef
97.
Zurück zum Zitat Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26.PubMed Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26.PubMed
98.
Zurück zum Zitat Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8.PubMed Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8.PubMed
99.
Zurück zum Zitat Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7.PubMedCrossRef Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7.PubMedCrossRef
100.
Zurück zum Zitat Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7.PubMed Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7.PubMed
101.
Zurück zum Zitat Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71.PubMed Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71.PubMed
102.
Zurück zum Zitat Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97.PubMedCrossRef Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97.PubMedCrossRef
103.
Zurück zum Zitat St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126. St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126.
104.
Zurück zum Zitat St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.PubMedCrossRef St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.PubMedCrossRef
105.
Zurück zum Zitat Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.PubMedCrossRef Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.PubMedCrossRef
106.
Zurück zum Zitat Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4.PubMed Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4.PubMed
107.
Zurück zum Zitat Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6.PubMedCrossRef Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6.PubMedCrossRef
108.
Zurück zum Zitat Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6.PubMed Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6.PubMed
109.
Zurück zum Zitat Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.PubMed Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.PubMed
110.
Zurück zum Zitat Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68.PubMedCrossRef Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68.PubMedCrossRef
111.
Zurück zum Zitat Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74.PubMedCrossRef Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74.PubMedCrossRef
112.
Zurück zum Zitat Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61.PubMed Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61.PubMed
113.
Zurück zum Zitat Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80.PubMedCrossRef Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80.PubMedCrossRef
114.
Zurück zum Zitat Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12.PubMed Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12.PubMed
115.
Zurück zum Zitat Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9.PubMed Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9.PubMed
116.
Zurück zum Zitat Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70.PubMed Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70.PubMed
117.
Zurück zum Zitat Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8.PubMedCrossRef Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8.PubMedCrossRef
118.
Zurück zum Zitat Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50.PubMedCrossRef Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50.PubMedCrossRef
119.
Zurück zum Zitat Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277.PubMedCrossRef Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277.PubMedCrossRef
120.
Zurück zum Zitat Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.PubMedCrossRef Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.PubMedCrossRef
121.
Zurück zum Zitat Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22.PubMed Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22.PubMed
122.
Zurück zum Zitat Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6.CrossRef Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6.CrossRef
123.
Zurück zum Zitat Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200.PubMedCrossRef Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200.PubMedCrossRef
124.
Zurück zum Zitat Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62.PubMed Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62.PubMed
125.
Zurück zum Zitat Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2.PubMedCrossRef Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2.PubMedCrossRef
126.
Zurück zum Zitat Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50.PubMed Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50.PubMed
127.
Zurück zum Zitat Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8. Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8.
128.
Zurück zum Zitat Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91.PubMedCrossRef Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91.PubMedCrossRef
129.
Zurück zum Zitat Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002. Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002.
130.
Zurück zum Zitat Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3.PubMedCrossRef Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3.PubMedCrossRef
131.
Zurück zum Zitat Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7.PubMedCrossRef Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7.PubMedCrossRef
132.
Zurück zum Zitat Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4.PubMedCrossRef Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4.PubMedCrossRef
133.
Zurück zum Zitat Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5.PubMed Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5.PubMed
134.
Zurück zum Zitat Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52.PubMedCrossRef Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52.PubMedCrossRef
135.
Zurück zum Zitat Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.PubMedCrossRef Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.PubMedCrossRef
136.
Zurück zum Zitat Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9. Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9.
137.
Zurück zum Zitat Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353.PubMedCrossRef Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353.PubMedCrossRef
138.
Zurück zum Zitat Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87.PubMedCrossRef Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87.PubMedCrossRef
139.
Zurück zum Zitat Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8.PubMedCrossRef Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8.PubMedCrossRef
140.
Zurück zum Zitat Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502.PubMedCrossRef Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502.PubMedCrossRef
141.
Zurück zum Zitat Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91. Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91.
142.
Zurück zum Zitat McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44.PubMedCrossRef McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44.PubMedCrossRef
143.
Zurück zum Zitat Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66.PubMedCrossRef Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66.PubMedCrossRef
144.
Zurück zum Zitat Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47.PubMedCrossRef Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47.PubMedCrossRef
145.
Zurück zum Zitat Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.PubMedCrossRef Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.PubMedCrossRef
146.
147.
Zurück zum Zitat Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66.PubMedCrossRef Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66.PubMedCrossRef
148.
Zurück zum Zitat Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44.PubMedCrossRef Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44.PubMedCrossRef
149.
Zurück zum Zitat Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.PubMed Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.PubMed
150.
Zurück zum Zitat Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25. Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25.
151.
Zurück zum Zitat Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23.PubMedCrossRef Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23.PubMedCrossRef
152.
Zurück zum Zitat Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3.PubMedCrossRef Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3.PubMedCrossRef
153.
Zurück zum Zitat Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75.PubMedCrossRef Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75.PubMedCrossRef
154.
Zurück zum Zitat Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.PubMed Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.PubMed
155.
Zurück zum Zitat Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91.PubMedCrossRef Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91.PubMedCrossRef
156.
Zurück zum Zitat Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8.PubMed Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8.PubMed
157.
Zurück zum Zitat Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.PubMedCrossRef Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.PubMedCrossRef
158.
Zurück zum Zitat Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9. Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9.
159.
Zurück zum Zitat Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.PubMed Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.PubMed
160.
Zurück zum Zitat Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87.CrossRef Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87.CrossRef
161.
Zurück zum Zitat Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.PubMed Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.PubMed
162.
Zurück zum Zitat Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510. Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510.
163.
Zurück zum Zitat Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6.PubMedCrossRef Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6.PubMedCrossRef
164.
Zurück zum Zitat Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37.PubMedCrossRef Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37.PubMedCrossRef
165.
Zurück zum Zitat Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74.PubMedCrossRef Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74.PubMedCrossRef
166.
Zurück zum Zitat Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55.PubMedCrossRef Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55.PubMedCrossRef
167.
Zurück zum Zitat Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15.PubMedCrossRef Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15.PubMedCrossRef
168.
Zurück zum Zitat Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94.PubMedCrossRef Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94.PubMedCrossRef
169.
Zurück zum Zitat DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8.PubMedCrossRef DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8.PubMedCrossRef
170.
Zurück zum Zitat Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44.PubMedCrossRef Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44.PubMedCrossRef
171.
Zurück zum Zitat Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.PubMedCrossRef Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.PubMedCrossRef
172.
Zurück zum Zitat Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6.PubMedCrossRef Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6.PubMedCrossRef
173.
Zurück zum Zitat Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61.PubMedCrossRef Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61.PubMedCrossRef
174.
Zurück zum Zitat Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.PubMedCrossRef Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.PubMedCrossRef
175.
Zurück zum Zitat Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10.PubMedCrossRef Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10.PubMedCrossRef
176.
Zurück zum Zitat Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5.PubMedCrossRef Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5.PubMedCrossRef
177.
Zurück zum Zitat Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90.PubMedCrossRef Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90.PubMedCrossRef
178.
Zurück zum Zitat Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62.PubMedCrossRef Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62.PubMedCrossRef
179.
Zurück zum Zitat Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104.PubMedCrossRef Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104.PubMedCrossRef
180.
Zurück zum Zitat Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65.PubMedCrossRef Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65.PubMedCrossRef
181.
Zurück zum Zitat Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8.PubMedCrossRef Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8.PubMedCrossRef
182.
Zurück zum Zitat Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63.PubMedCrossRef Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63.PubMedCrossRef
183.
Zurück zum Zitat Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.PubMedCrossRef Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.PubMedCrossRef
184.
Zurück zum Zitat Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.PubMedCrossRef Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.PubMedCrossRef
185.
Zurück zum Zitat Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15.PubMedCrossRef Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15.PubMedCrossRef
186.
Zurück zum Zitat Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8.PubMedCrossRef Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8.PubMedCrossRef
187.
Zurück zum Zitat Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46.PubMedCrossRef Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46.PubMedCrossRef
188.
Zurück zum Zitat Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106.PubMedCrossRef Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106.PubMedCrossRef
189.
Zurück zum Zitat Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86.PubMed Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86.PubMed
190.
Zurück zum Zitat Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505.PubMedCrossRef Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505.PubMedCrossRef
191.
Zurück zum Zitat DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85.CrossRef DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85.CrossRef
192.
Zurück zum Zitat Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85. Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85.
193.
Zurück zum Zitat Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31. Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31.
194.
Zurück zum Zitat Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.PubMedCrossRef Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.PubMedCrossRef
195.
Zurück zum Zitat Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11.PubMedCrossRef Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11.PubMedCrossRef
196.
Zurück zum Zitat Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.PubMedCrossRef Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.PubMedCrossRef
197.
Zurück zum Zitat Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307. Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307.
198.
Zurück zum Zitat Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.PubMedCrossRef Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.PubMedCrossRef
199.
Zurück zum Zitat Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8.PubMedCrossRef Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8.PubMedCrossRef
200.
Zurück zum Zitat Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54.PubMedCrossRef Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54.PubMedCrossRef
201.
Zurück zum Zitat Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5.PubMedCrossRef Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5.PubMedCrossRef
202.
Zurück zum Zitat Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.PubMedCrossRef Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.PubMedCrossRef
203.
204.
Zurück zum Zitat Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413.PubMedCrossRef Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413.PubMedCrossRef
205.
Zurück zum Zitat MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.PubMedCrossRef MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.PubMedCrossRef
206.
Zurück zum Zitat Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7.PubMed Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7.PubMed
207.
Zurück zum Zitat Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6. Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6.
208.
Zurück zum Zitat Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6.PubMedCrossRef Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6.PubMedCrossRef
209.
Zurück zum Zitat Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.PubMedCrossRef Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.PubMedCrossRef
210.
Zurück zum Zitat Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.PubMedCrossRef Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.PubMedCrossRef
211.
Zurück zum Zitat Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342).PubMed Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342).PubMed
212.
Zurück zum Zitat Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.PubMed Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.PubMed
213.
Zurück zum Zitat Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41.PubMedCrossRef Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41.PubMedCrossRef
214.
Zurück zum Zitat Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4.PubMedCrossRef Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4.PubMedCrossRef
215.
Zurück zum Zitat Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4.PubMedCrossRef Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4.PubMedCrossRef
216.
Zurück zum Zitat Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8.PubMedCrossRef Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8.PubMedCrossRef
217.
Zurück zum Zitat Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8.PubMedCrossRef Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8.PubMedCrossRef
218.
Zurück zum Zitat Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.PubMed Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.PubMed
219.
Zurück zum Zitat Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8. Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8.
220.
Zurück zum Zitat Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4.PubMedCrossRef Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4.PubMedCrossRef
221.
Zurück zum Zitat Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4.CrossRef Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4.CrossRef
222.
Zurück zum Zitat Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12.PubMedCrossRef Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12.PubMedCrossRef
223.
Zurück zum Zitat Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5.PubMed Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5.PubMed
224.
Zurück zum Zitat Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21. Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21.
225.
Zurück zum Zitat Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81.PubMed Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81.PubMed
226.
Zurück zum Zitat Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51. Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51.
227.
Zurück zum Zitat Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series. Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series.
228.
Zurück zum Zitat Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52.PubMedCrossRef Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52.PubMedCrossRef
229.
Zurück zum Zitat Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33.PubMed Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33.PubMed
230.
Zurück zum Zitat Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.PubMed Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.PubMed
231.
Zurück zum Zitat Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10.PubMedCrossRef Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10.PubMedCrossRef
232.
Zurück zum Zitat Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.PubMedCrossRef Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.PubMedCrossRef
233.
Zurück zum Zitat Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26.PubMed Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26.PubMed
234.
Zurück zum Zitat Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71.PubMedCrossRef Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71.PubMedCrossRef
235.
Zurück zum Zitat Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3.PubMed Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3.PubMed
236.
Zurück zum Zitat Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8.PubMed Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8.PubMed
237.
Zurück zum Zitat Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5.PubMedCrossRef Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5.PubMedCrossRef
238.
Zurück zum Zitat Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8.PubMed Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8.PubMed
239.
Zurück zum Zitat Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68. Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68.
240.
Zurück zum Zitat Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3.PubMedCrossRef Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3.PubMedCrossRef
241.
Zurück zum Zitat Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363.PubMed Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363.PubMed
242.
Zurück zum Zitat Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73. Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73.
243.
Zurück zum Zitat Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6.PubMed Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6.PubMed
244.
Zurück zum Zitat Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9.PubMed Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9.PubMed
245.
Zurück zum Zitat Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71.PubMed Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71.PubMed
246.
Zurück zum Zitat Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62.PubMed Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62.PubMed
247.
Zurück zum Zitat Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10.PubMedCrossRef Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10.PubMedCrossRef
248.
Zurück zum Zitat Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8.PubMedCrossRef Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8.PubMedCrossRef
249.
250.
Zurück zum Zitat Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5.PubMedCrossRef Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5.PubMedCrossRef
251.
Zurück zum Zitat McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8.PubMedCrossRef McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8.PubMedCrossRef
252.
Zurück zum Zitat Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7.PubMedCrossRef Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7.PubMedCrossRef
253.
Zurück zum Zitat Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80.PubMedCrossRef Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80.PubMedCrossRef
254.
Zurück zum Zitat Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52.CrossRef Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52.CrossRef
255.
Zurück zum Zitat Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42.PubMed Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42.PubMed
256.
Zurück zum Zitat Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8.PubMed Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8.PubMed
257.
Zurück zum Zitat Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46.CrossRef Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46.CrossRef
258.
Zurück zum Zitat O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.PubMedCrossRef O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.PubMedCrossRef
259.
Zurück zum Zitat Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.PubMedCrossRef Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.PubMedCrossRef
260.
Zurück zum Zitat Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.PubMed Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.PubMed
261.
Zurück zum Zitat Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83. Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83.
262.
Zurück zum Zitat Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80.PubMed Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80.PubMed
263.
Zurück zum Zitat Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5.PubMedCrossRef Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5.PubMedCrossRef
264.
Zurück zum Zitat Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18.PubMed Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18.PubMed
265.
Zurück zum Zitat Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9. Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9.
266.
Zurück zum Zitat Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36.PubMedCrossRef Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36.PubMedCrossRef
267.
Zurück zum Zitat Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.PubMed Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.PubMed
268.
Zurück zum Zitat Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9.PubMed Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9.PubMed
269.
Zurück zum Zitat Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3.PubMedCrossRef Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3.PubMedCrossRef
270.
Zurück zum Zitat Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84.PubMedCrossRef Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84.PubMedCrossRef
271.
Zurück zum Zitat Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6.CrossRef Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6.CrossRef
272.
Zurück zum Zitat Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60.PubMed Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60.PubMed
273.
Zurück zum Zitat Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70.PubMed Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70.PubMed
274.
Zurück zum Zitat Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.PubMedCrossRef Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.PubMedCrossRef
275.
Zurück zum Zitat Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6.PubMedCrossRef Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6.PubMedCrossRef
276.
Zurück zum Zitat Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82.PubMedCrossRef Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82.PubMedCrossRef
277.
Zurück zum Zitat Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.PubMed Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.PubMed
278.
Zurück zum Zitat Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.PubMed Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.PubMed
279.
Zurück zum Zitat Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.PubMed Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.PubMed
280.
Zurück zum Zitat Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4.PubMedCrossRef Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4.PubMedCrossRef
281.
Zurück zum Zitat Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15.PubMed Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15.PubMed
282.
Zurück zum Zitat Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s.CrossRef Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s.CrossRef
283.
Zurück zum Zitat Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.PubMedCrossRef Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.PubMedCrossRef
284.
Zurück zum Zitat Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42.PubMedCrossRef Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42.PubMedCrossRef
285.
Zurück zum Zitat Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73.PubMedCrossRef Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73.PubMedCrossRef
286.
Zurück zum Zitat Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72.PubMedCrossRef Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72.PubMedCrossRef
287.
Zurück zum Zitat Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5.PubMedCrossRef Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5.PubMedCrossRef
288.
Zurück zum Zitat Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61.PubMed Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61.PubMed
289.
Zurück zum Zitat Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306.PubMed Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306.PubMed
290.
Zurück zum Zitat Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6.PubMedCrossRef Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6.PubMedCrossRef
291.
Zurück zum Zitat Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6.PubMed Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6.PubMed
292.
Zurück zum Zitat Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22.PubMed Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22.PubMed
293.
Zurück zum Zitat Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9.CrossRef Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9.CrossRef
294.
Zurück zum Zitat Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22.PubMed Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22.PubMed
295.
Zurück zum Zitat Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5.PubMedCrossRef Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5.PubMedCrossRef
296.
Zurück zum Zitat Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.PubMedCrossRef Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.PubMedCrossRef
297.
Zurück zum Zitat Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.PubMedCrossRef Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.PubMedCrossRef
298.
Zurück zum Zitat Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53.PubMedCrossRef Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53.PubMedCrossRef
299.
Zurück zum Zitat Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4.PubMedCrossRef Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4.PubMedCrossRef
300.
Zurück zum Zitat Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9.PubMedCrossRef Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9.PubMedCrossRef
301.
Zurück zum Zitat Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90.PubMed Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90.PubMed
302.
Zurück zum Zitat Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65.PubMed Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65.PubMed
303.
Zurück zum Zitat Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60.PubMedCrossRef Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60.PubMedCrossRef
304.
Zurück zum Zitat Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91.PubMedCrossRef Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91.PubMedCrossRef
305.
Zurück zum Zitat Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8.PubMed Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8.PubMed
306.
Zurück zum Zitat Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43.PubMedCrossRef Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43.PubMedCrossRef
307.
Zurück zum Zitat Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22.PubMed Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22.PubMed
308.
Zurück zum Zitat Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36.CrossRef Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36.CrossRef
309.
Zurück zum Zitat Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9.PubMed Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9.PubMed
310.
Zurück zum Zitat Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81.PubMed Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81.PubMed
311.
Zurück zum Zitat Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4.PubMedCrossRef Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4.PubMedCrossRef
312.
Zurück zum Zitat Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.PubMedCrossRef Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.PubMedCrossRef
313.
Zurück zum Zitat Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43.PubMedCrossRef Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43.PubMedCrossRef
314.
Zurück zum Zitat Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73.PubMedCrossRef Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73.PubMedCrossRef
315.
Zurück zum Zitat St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7.PubMedCrossRef St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7.PubMedCrossRef
316.
Zurück zum Zitat Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32. Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.
317.
Zurück zum Zitat Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7.PubMed Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7.PubMed
318.
Zurück zum Zitat Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92.PubMed Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92.PubMed
319.
Zurück zum Zitat Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56.PubMed Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56.PubMed
320.
Zurück zum Zitat Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2.PubMed Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2.PubMed
321.
Zurück zum Zitat Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8.PubMedCrossRef Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8.PubMedCrossRef
322.
Zurück zum Zitat Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15.PubMed Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15.PubMed
323.
Zurück zum Zitat Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21.PubMed Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21.PubMed
324.
Zurück zum Zitat Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6.PubMed Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6.PubMed
325.
Zurück zum Zitat Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95.PubMed Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95.PubMed
326.
Zurück zum Zitat Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7.PubMed Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7.PubMed
327.
Zurück zum Zitat Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300.PubMedCrossRef Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300.PubMedCrossRef
328.
Zurück zum Zitat Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7.PubMed Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7.PubMed
329.
Zurück zum Zitat Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8.PubMedCrossRef Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8.PubMedCrossRef
330.
Zurück zum Zitat Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9.PubMed Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9.PubMed
331.
Zurück zum Zitat Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6.PubMedCrossRef Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6.PubMedCrossRef
332.
Zurück zum Zitat Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8.CrossRef Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8.CrossRef
333.
Zurück zum Zitat Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.PubMedCrossRef Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.PubMedCrossRef
334.
Zurück zum Zitat Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53.PubMedCrossRef Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53.PubMedCrossRef
335.
Zurück zum Zitat Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8.PubMedCrossRef Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8.PubMedCrossRef
336.
Zurück zum Zitat Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.PubMedCrossRef Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.PubMedCrossRef
337.
Zurück zum Zitat Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20.PubMedCrossRef Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20.PubMedCrossRef
338.
Zurück zum Zitat Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6.PubMedCrossRef Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6.PubMedCrossRef
339.
Zurück zum Zitat Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6.PubMedCrossRef Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6.PubMedCrossRef
340.
Zurück zum Zitat Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20.PubMedCrossRef Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20.PubMedCrossRef
341.
Zurück zum Zitat Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4.PubMedCrossRef Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4.PubMedCrossRef
342.
Zurück zum Zitat Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100.PubMed Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100.PubMed
343.
Zurück zum Zitat Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3.PubMed Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3.PubMed
344.
Zurück zum Zitat Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70.PubMed Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70.PubMed
345.
Zurück zum Zitat Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8.PubMedCrossRef Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8.PubMedCrossRef
346.
Zurück zum Zitat Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6.PubMedCrossRef Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6.PubMedCrossRef
347.
Zurück zum Zitat Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.PubMedCrossRef Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.PubMedCrossRef
348.
Zurück zum Zitat Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82.PubMedCrossRef Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82.PubMedCrossRef
349.
Zurück zum Zitat Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483.CrossRef Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483.CrossRef
350.
Zurück zum Zitat Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67.PubMedCrossRef Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67.PubMedCrossRef
351.
Zurück zum Zitat Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31.PubMed Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31.PubMed
352.
Zurück zum Zitat Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32.PubMedCrossRef Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32.PubMedCrossRef
353.
Zurück zum Zitat Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6. Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6.
354.
Zurück zum Zitat Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6.PubMedCrossRef Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6.PubMedCrossRef
355.
Zurück zum Zitat Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72.PubMed Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72.PubMed
356.
Zurück zum Zitat Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27.CrossRef Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27.CrossRef
357.
Zurück zum Zitat Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8.PubMedCrossRef Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8.PubMedCrossRef
358.
Zurück zum Zitat Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90.PubMedCrossRef Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90.PubMedCrossRef
359.
Zurück zum Zitat Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32. Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.
360.
Zurück zum Zitat Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61.PubMedCrossRef Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61.PubMedCrossRef
361.
Zurück zum Zitat Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6. Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6.
362.
Zurück zum Zitat Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2. Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2.
363.
Zurück zum Zitat Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96.PubMed Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96.PubMed
364.
Zurück zum Zitat Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7.PubMed Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7.PubMed
365.
Zurück zum Zitat Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95.PubMedCrossRef Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95.PubMedCrossRef
366.
Zurück zum Zitat Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42.PubMedCrossRef Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42.PubMedCrossRef
367.
Zurück zum Zitat Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23.PubMedCrossRef Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23.PubMedCrossRef
368.
Zurück zum Zitat Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6.PubMedCrossRef Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6.PubMedCrossRef
369.
Zurück zum Zitat Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50.PubMedCrossRef Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50.PubMedCrossRef
370.
Zurück zum Zitat Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52. Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52.
371.
Zurück zum Zitat Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.PubMed Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.PubMed
372.
Zurück zum Zitat Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85. Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85.
373.
Zurück zum Zitat Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7.PubMed Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7.PubMed
374.
Zurück zum Zitat Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12.PubMedCrossRef Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12.PubMedCrossRef
375.
Zurück zum Zitat Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.PubMedCrossRef Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.PubMedCrossRef
376.
Zurück zum Zitat Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.PubMedCrossRef Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.PubMedCrossRef
377.
Zurück zum Zitat Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5.PubMed Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5.PubMed
378.
Zurück zum Zitat Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.PubMed Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.PubMed
Metadaten
Titel
The Functional Metabolism and Molecular Biology of Vitamin D Action
verfasst von
Lori A. Plum
Hector F. DeLuca
Publikationsdatum
01.03.2009
Verlag
Humana Press Inc
Erschienen in
Clinical & Translational Metabolism / Ausgabe 1/2009
Print ISSN: 1534-8644
Elektronische ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-009-9040-z

Weitere Artikel der Ausgabe 1/2009

Clinical Reviews in Bone and Mineral Metabolism 1/2009 Zur Ausgabe

Introduction

Introduction

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.