Skip to main content
Erschienen in: Clinical Reviews in Bone and Mineral Metabolism 2/2014

01.06.2014 | Original Paper

Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another?

verfasst von: Janalee Isaacson, Marco Brotto

Erschienen in: Clinical & Translational Metabolism | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

The complexity of cell interactions with their microenvironment and their ability to communicate at the autocrine, paracrine, and endocrine levels has gradually but significantly evolved in the last three decades. The musculoskeletal system has been historically recognized to be governed by a relationship of proximity and function, chiefly dictated by mechanical forces and the work of gravity itself. In this review article, we first provide a historical overview of the biomechanical theory of bone–muscle interactions. Next, we expand to detail the significant evolution in our understanding of the function of bones and muscles as secretory organs. Then, we review and discuss new evidence in support of a biochemical interaction between these two tissues. We then propose that these two models of interaction are complementary and intertwined providing for a new frontier for the investigation of how bone–muscle cross talk could be fully explored for the targeting of new therapies for musculoskeletal diseases, particularly the twin conditions of aging, osteoporosis and sarcopenia. In the last section, we explore the bone–muscle cross talk in the context of their interactions with other tissues and the global impact of these multi-tissue interactions on chronic diseases.
Literatur
1.
2.
Zurück zum Zitat Berg AH, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.PubMedCrossRef Berg AH, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.PubMedCrossRef
3.
Zurück zum Zitat Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416–22.PubMedCrossRef Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416–22.PubMedCrossRef
4.
Zurück zum Zitat Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. AJP Cell Physiol. 2011;302:C327–59.CrossRef Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. AJP Cell Physiol. 2011;302:C327–59.CrossRef
5.
6.
Zurück zum Zitat Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years live with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.PubMedCrossRef Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years live with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.PubMedCrossRef
7.
Zurück zum Zitat Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244:139–47.PubMedCrossRef Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244:139–47.PubMedCrossRef
8.
Zurück zum Zitat Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S. A quantitative evaluation of osteoblast–osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone. 1992;13:363–8.PubMedCrossRef Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S. A quantitative evaluation of osteoblast–osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone. 1992;13:363–8.PubMedCrossRef
9.
Zurück zum Zitat Tanaka K, Matsuo T, Ohta M, Sato T, Tezuka K, Nijweide PJ, et al. Time-lapse microcinematography of osteocytes. Miner Electrolyte Metab. 1995;21:189–92.PubMed Tanaka K, Matsuo T, Ohta M, Sato T, Tezuka K, Nijweide PJ, et al. Time-lapse microcinematography of osteocytes. Miner Electrolyte Metab. 1995;21:189–92.PubMed
10.
Zurück zum Zitat Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASB J. 1995;9:441–5. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASB J. 1995;9:441–5.
11.
Zurück zum Zitat Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuna-canalicular network. FASEB J. 1999;13:101–12. Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuna-canalicular network. FASEB J. 1999;13:101–12.
12.
Zurück zum Zitat Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of one formatin via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.PubMedCentralPubMedCrossRef Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of one formatin via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiologyical role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.PubMedCentralPubMedCrossRef Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiologyical role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.PubMedCentralPubMedCrossRef Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.PubMedCrossRef Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.PubMedCrossRef
17.
Zurück zum Zitat Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991;14:237–50.PubMedCrossRef Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991;14:237–50.PubMedCrossRef
18.
Zurück zum Zitat Ducy P, Desbois C, Boyce B, Pinero G, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.PubMedCrossRef Ducy P, Desbois C, Boyce B, Pinero G, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.PubMedCrossRef
19.
Zurück zum Zitat Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.PubMedCrossRef Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.PubMedCrossRef
20.
Zurück zum Zitat Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.PubMedCentralPubMedCrossRef Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostablandin F2α: a bone remodeling mediator. J Cell Physiol. 2013;228:25–9.PubMedCrossRef Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostablandin F2α: a bone remodeling mediator. J Cell Physiol. 2013;228:25–9.PubMedCrossRef
22.
Zurück zum Zitat Mo C, Romero-Suarez S, Brotto MA. Pge2 accelerates myogenesis of C2C12 myoblasts. Biophys J. 2011;100:288a.CrossRef Mo C, Romero-Suarez S, Brotto MA. Pge2 accelerates myogenesis of C2C12 myoblasts. Biophys J. 2011;100:288a.CrossRef
23.
Zurück zum Zitat Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.PubMedCrossRef Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.PubMedCrossRef
24.
Zurück zum Zitat Orestes-Cardoso SM, Nefussi JR, Hotton D, Mesbah M, Orestes-Cardoso MDS, Robert B, et al. Postnatal Msx1 expression pattern in craniofacial, axial, and appendicular skeleton of transgenic mice from the first week until the second year. Dev Dyn. 2001;221:1–13.PubMedCrossRef Orestes-Cardoso SM, Nefussi JR, Hotton D, Mesbah M, Orestes-Cardoso MDS, Robert B, et al. Postnatal Msx1 expression pattern in craniofacial, axial, and appendicular skeleton of transgenic mice from the first week until the second year. Dev Dyn. 2001;221:1–13.PubMedCrossRef
25.
Zurück zum Zitat Pearson OM, Lieberman DE. The aging of Wolff’s law: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;125:63–99.CrossRef Pearson OM, Lieberman DE. The aging of Wolff’s law: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;125:63–99.CrossRef
26.
Zurück zum Zitat Lang TF. The bone–muscle relationship in men and women. J Osteoporos. 2011;2011:1–4.CrossRef Lang TF. The bone–muscle relationship in men and women. J Osteoporos. 2011;2011:1–4.CrossRef
27.
Zurück zum Zitat Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16:S393–9. Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16:S393–9.
28.
Zurück zum Zitat Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40:1196–202.PubMedCrossRef Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40:1196–202.PubMedCrossRef
29.
Zurück zum Zitat Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610–38.PubMedCrossRef Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610–38.PubMedCrossRef
30.
Zurück zum Zitat Gomez-Pinilla F. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88:2187–95.PubMedCrossRef Gomez-Pinilla F. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88:2187–95.PubMedCrossRef
31.
Zurück zum Zitat Goldspink DF, Goldspink G. The role of passive stretch in retarding muscle atrophy. In: Nix WA, Vrbova G, editors. Electrical stimulation and neuromuscular disorders. Berlin: Springer; 1986. p. 91–100.CrossRef Goldspink DF, Goldspink G. The role of passive stretch in retarding muscle atrophy. In: Nix WA, Vrbova G, editors. Electrical stimulation and neuromuscular disorders. Berlin: Springer; 1986. p. 91–100.CrossRef
32.
Zurück zum Zitat Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 1997;20:815–22.PubMedCrossRef Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 1997;20:815–22.PubMedCrossRef
33.
Zurück zum Zitat Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.PubMedCrossRef Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.PubMedCrossRef
34.
Zurück zum Zitat Steensberg A, Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529:237–42.PubMedCentralPubMedCrossRef Steensberg A, Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529:237–42.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Andersen K, Pedersen B. The role of inflammation in vascular insulin resistance with focus on IL-6. Horm Metab Res. 2008;40:635–9.PubMedCrossRef Andersen K, Pedersen B. The role of inflammation in vascular insulin resistance with focus on IL-6. Horm Metab Res. 2008;40:635–9.PubMedCrossRef
36.
Zurück zum Zitat Keller C. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):2748–50.PubMed Keller C. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):2748–50.PubMed
37.
Zurück zum Zitat Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32:833–9.PubMedCrossRef Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32:833–9.PubMedCrossRef
38.
Zurück zum Zitat Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103:1093–8.PubMedCrossRef Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103:1093–8.PubMedCrossRef
39.
Zurück zum Zitat Matthews VB, Astrom MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.PubMedCrossRef Matthews VB, Astrom MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.PubMedCrossRef
40.
Zurück zum Zitat Pedersen L, Olsen CH, Pedersen BK, Hojman P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. AJP Endocrinol Metab. 2012;302:E831–40.CrossRef Pedersen L, Olsen CH, Pedersen BK, Hojman P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. AJP Endocrinol Metab. 2012;302:E831–40.CrossRef
41.
42.
43.
Zurück zum Zitat Hee Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(12):4899–907. Hee Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(12):4899–907.
44.
Zurück zum Zitat Chan JKK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130:284e–95e.PubMedCentralPubMedCrossRef Chan JKK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130:284e–95e.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997;387:83–90.PubMedCrossRef McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997;387:83–90.PubMedCrossRef
46.
Zurück zum Zitat Jouliaekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007;7:310–5.CrossRef Jouliaekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007;7:310–5.CrossRef
47.
Zurück zum Zitat Zimmers TA. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8.PubMedCrossRef Zimmers TA. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8.PubMedCrossRef
48.
Zurück zum Zitat Hamrick MW, McPherron AC, Lovejoy CO. Bone mineral content and density in humerus of adult myostatin-deficient mice. Calcif Tissue Int. 2002;71:63–8.PubMedCrossRef Hamrick MW, McPherron AC, Lovejoy CO. Bone mineral content and density in humerus of adult myostatin-deficient mice. Calcif Tissue Int. 2002;71:63–8.PubMedCrossRef
49.
Zurück zum Zitat Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec. 2003;272A:388–91.CrossRef Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec. 2003;272A:388–91.CrossRef
50.
Zurück zum Zitat Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2005;21:477–83.PubMedCrossRef Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2005;21:477–83.PubMedCrossRef
51.
Zurück zum Zitat Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8:573–83.PubMedCentralPubMedCrossRef Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8:573–83.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Coiro V, Volpi R, Cataldo S, Magotti MG, Maffei ML, Giumelli C, et al. Effect of physiological exercise on osteocalcin levels in subjects with adrenal incidentaloma. J Endocrinol Invest. 2012;35:357–8.PubMedCrossRef Coiro V, Volpi R, Cataldo S, Magotti MG, Maffei ML, Giumelli C, et al. Effect of physiological exercise on osteocalcin levels in subjects with adrenal incidentaloma. J Endocrinol Invest. 2012;35:357–8.PubMedCrossRef
53.
Zurück zum Zitat Centers for Disease Control and Prevention (US); Prevalence of obesity among older adults in the United States, 2007–2010. 2012. (NCHS Data Brief; no. 106). Centers for Disease Control and Prevention (US); Prevalence of obesity among older adults in the United States, 2007–2010. 2012. (NCHS Data Brief; no. 106).
54.
Zurück zum Zitat Beltran-Sanchez H, Harhay MO, Harhay MM, McElliogott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703.PubMedCrossRef Beltran-Sanchez H, Harhay MO, Harhay MM, McElliogott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703.PubMedCrossRef
55.
Zurück zum Zitat Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137:231–43.PubMedCrossRef Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137:231–43.PubMedCrossRef
56.
Zurück zum Zitat Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48.PubMedCrossRef Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48.PubMedCrossRef
57.
Zurück zum Zitat Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.PubMedCrossRef Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.PubMedCrossRef
58.
Zurück zum Zitat Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle. 2013;4:89–94.PubMedCentralPubMedCrossRef Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle. 2013;4:89–94.PubMedCentralPubMedCrossRef
59.
60.
Zurück zum Zitat Jensen GL, Friedmann JM. Obesity is associated with functional decline in community-dwelling rural older persons. J Am Geriatr Soc. 2002;50(5):918–23.PubMedCrossRef Jensen GL, Friedmann JM. Obesity is associated with functional decline in community-dwelling rural older persons. J Am Geriatr Soc. 2002;50(5):918–23.PubMedCrossRef
61.
Zurück zum Zitat Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):1–7.CrossRef Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):1–7.CrossRef
62.
Zurück zum Zitat Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes. Diabetes Care. 2010;33(7):1497–9.PubMedCentralPubMedCrossRef Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes. Diabetes Care. 2010;33(7):1497–9.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59:1217–24.PubMedCentralPubMedCrossRef Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59:1217–24.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Hofbauer LG, Brueck C, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. JBMR. 2007;22(9):1317–28.CrossRef Hofbauer LG, Brueck C, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. JBMR. 2007;22(9):1317–28.CrossRef
66.
Zurück zum Zitat Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14:429–35.PubMedCrossRef Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14:429–35.PubMedCrossRef
67.
Zurück zum Zitat Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.PubMedCrossRef Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.PubMedCrossRef
68.
Zurück zum Zitat Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone sweet bone—osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297–305.PubMedCrossRef Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone sweet bone—osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297–305.PubMedCrossRef
Metadaten
Titel
Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another?
verfasst von
Janalee Isaacson
Marco Brotto
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Clinical & Translational Metabolism / Ausgabe 2/2014
Print ISSN: 1534-8644
Elektronische ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-013-9152-3

Weitere Artikel der Ausgabe 2/2014

Clinical Reviews in Bone and Mineral Metabolism 2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.