Skip to main content
Erschienen in: Endocrine 3/2017

14.11.2016 | Original Article

Sirtuins 1–7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia

verfasst von: Stefania Mariani, Giuliana Di Rocco, Gabriele Toietta, Matteo A. Russo, Elisa Petrangeli, Luisa Salvatori

Erschienen in: Endocrine | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

The sirtuin family comprises seven NAD+-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins’ levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins’ expression and clinical and molecular parameters were also analyzed. We found that sirtuin1–6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1–6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins’ expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins’ levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral adipose-derived stem cells of obese patients.
Literatur
1.
Zurück zum Zitat S. Imai, C.M. Armstrong, M. Kaeberlein, L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)CrossRefPubMed S. Imai, C.M. Armstrong, M. Kaeberlein, L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)CrossRefPubMed
2.
Zurück zum Zitat M.C. Haigis, D.A. Sinclair, Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010)CrossRefPubMedCentral M.C. Haigis, D.A. Sinclair, Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010)CrossRefPubMedCentral
3.
Zurück zum Zitat F. Picard, M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, R. Machado De Oliveira, M. Leid, M.W. McBurney, L. Guarente, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771–776 (2004)CrossRefPubMedPubMedCentral F. Picard, M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, R. Machado De Oliveira, M. Leid, M.W. McBurney, L. Guarente, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771–776 (2004)CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat L. Qiang, L. Wang, N. Kon, W. Zhao, S. Lee, Y. Zhang, M. Rosenbaum, Y. Zhao, W. Gu, S.R. Farmer, D. Accili, Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012)CrossRefPubMedPubMedCentral L. Qiang, L. Wang, N. Kon, W. Zhao, S. Lee, Y. Zhang, M. Rosenbaum, Y. Zhao, W. Gu, S.R. Farmer, D. Accili, Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012)CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat P. Chakrabarti, T. English, S. Karki, L. Qiang, R. Tao, J. Kim, Z. Luo, S.R. Farmer, K.V. Kandror, SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J. Lipid. Res. 52, 1693–1701 (2011)CrossRefPubMedPubMedCentral P. Chakrabarti, T. English, S. Karki, L. Qiang, R. Tao, J. Kim, Z. Luo, S.R. Farmer, K.V. Kandror, SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J. Lipid. Res. 52, 1693–1701 (2011)CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat T. Yoshizaki, J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, J.M. Olefsky, SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell Biol. 29, 1363–1374 (2009)CrossRefPubMed T. Yoshizaki, J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, J.M. Olefsky, SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell Biol. 29, 1363–1374 (2009)CrossRefPubMed
7.
Zurück zum Zitat L. Qiao, J. Shao, SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J. Biol. Chem. 281, 39915–39924 (2006)CrossRefPubMed L. Qiao, J. Shao, SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J. Biol. Chem. 281, 39915–39924 (2006)CrossRefPubMed
8.
Zurück zum Zitat Y.S. Song, S.K. Lee, Y.J. Jang, H.S. Park, J.H. Kim, Y.J. Lee, Y.S. Heo, Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res. Clin. Pract. 101, 341–348 (2013)CrossRefPubMed Y.S. Song, S.K. Lee, Y.J. Jang, H.S. Park, J.H. Kim, Y.J. Lee, Y.S. Heo, Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res. Clin. Pract. 101, 341–348 (2013)CrossRefPubMed
9.
Zurück zum Zitat S.B. Pedersen, J. Ølholm, S.K. Paulsen, M.F. Bennetzen, B. Richelsen, Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. (Lond.) 32, 1250–1255 (2008)CrossRef S.B. Pedersen, J. Ølholm, S.K. Paulsen, M.F. Bennetzen, B. Richelsen, Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. (Lond.) 32, 1250–1255 (2008)CrossRef
10.
Zurück zum Zitat E. Jing, S. Gesta, C.R. Kahn, SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell. Metab. 6, 105–114 (2007)CrossRefPubMedPubMedCentral E. Jing, S. Gesta, C.R. Kahn, SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell. Metab. 6, 105–114 (2007)CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat F. Wang, Q. Tong, SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol. Biol. Cell 20, 801–808 (2009)CrossRefPubMedPubMedCentral F. Wang, Q. Tong, SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol. Biol. Cell 20, 801–808 (2009)CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat T. Shi, F. Wang, E. Stieren, Q. Tong, SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560–13567 (2005)CrossRefPubMed T. Shi, F. Wang, E. Stieren, Q. Tong, SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560–13567 (2005)CrossRefPubMed
13.
Zurück zum Zitat G. Laurent, N.J. German, A.K. Saha, V.C. de Boer, M. Davies, T.R. Koves, N. Dephoure, F. Fischer, G. Boanca, B. Vaitheesvaran, S.B. Lovitch, A.H. Sharpe, I.J. Kurland, C. Steegborn, S.P. Gygi, D.M. Muoio, N.B. Ruderman, M.C. Haigis, SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698 (2013)CrossRefPubMedPubMedCentral G. Laurent, N.J. German, A.K. Saha, V.C. de Boer, M. Davies, T.R. Koves, N. Dephoure, F. Fischer, G. Boanca, B. Vaitheesvaran, S.B. Lovitch, A.H. Sharpe, I.J. Kurland, C. Steegborn, S.P. Gygi, D.M. Muoio, N.B. Ruderman, M.C. Haigis, SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698 (2013)CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Y. Kanfi, V. Peshti, R. Gil, S. Naiman, L. Nahum, E. Levin, N. Kronfeld-Schor, H.Y. Cohen, SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9, 162–173 (2010)CrossRefPubMed Y. Kanfi, V. Peshti, R. Gil, S. Naiman, L. Nahum, E. Levin, N. Kronfeld-Schor, H.Y. Cohen, SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9, 162–173 (2010)CrossRefPubMed
15.
Zurück zum Zitat Y.X. Wang, C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, R.M. Evans, Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003)CrossRefPubMed Y.X. Wang, C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, R.M. Evans, Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003)CrossRefPubMed
16.
Zurück zum Zitat T. Tanaka, J. Yamamoto, S. Iwasaki, H. Asaba, H. Hamura, Y. Ikeda, M. Watanabe, K. Magoori, R.X. Ioka, K. Tachibana, Y. Watanabe, Y. Uchiyama, K. Sumi, H. Iguchi, S. Ito, T. Doi, T. Hamakubo, M. Naito, J. Auwerx, M. Yanagisawa, T. Kodama, J. Sakai, Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. U S A 100, 15924–15929 (2003)CrossRefPubMedPubMedCentral T. Tanaka, J. Yamamoto, S. Iwasaki, H. Asaba, H. Hamura, Y. Ikeda, M. Watanabe, K. Magoori, R.X. Ioka, K. Tachibana, Y. Watanabe, Y. Uchiyama, K. Sumi, H. Iguchi, S. Ito, T. Doi, T. Hamakubo, M. Naito, J. Auwerx, M. Yanagisawa, T. Kodama, J. Sakai, Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. U S A 100, 15924–15929 (2003)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat P. Trayhurn, Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 93, 1–21 (2013)CrossRef P. Trayhurn, Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 93, 1–21 (2013)CrossRef
18.
Zurück zum Zitat M.P. Gillum, M.E. Kotas, D.M. Erion, R. Kursawe, P. Chatterjee, K.T. Nead, E.S. Muise, J.J. Hsiao, D.W. Frederick, S. Yonemitsu, A.S. Banks, L. Qiang, S. Bhanot, J.M. Olefsky, D.D. Sears, S. Caprio, G.I. Shulman, SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011)CrossRefPubMedPubMedCentral M.P. Gillum, M.E. Kotas, D.M. Erion, R. Kursawe, P. Chatterjee, K.T. Nead, E.S. Muise, J.J. Hsiao, D.W. Frederick, S. Yonemitsu, A.S. Banks, L. Qiang, S. Bhanot, J.M. Olefsky, D.D. Sears, S. Caprio, G.I. Shulman, SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011)CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat T. Yoshizaki, S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D.Y. Oh, M. Lu, J.C. Milne, C. Westphal, G. Bandyopadhyay, J.M. Olefsky, SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298, E419–E428 (2010)CrossRefPubMed T. Yoshizaki, S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D.Y. Oh, M. Lu, J.C. Milne, C. Westphal, G. Bandyopadhyay, J.M. Olefsky, SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298, E419–E428 (2010)CrossRefPubMed
20.
Zurück zum Zitat P.A. Zuk, M. Zhu, P. Ashjian, D.A. De Ugarte, J.I. Huang, H. Mizuno, Z.C. Alfonso, J.K. Fraser, P. Benhaim, M.H. Hedrick, Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002)CrossRefPubMedCentral P.A. Zuk, M. Zhu, P. Ashjian, D.A. De Ugarte, J.I. Huang, H. Mizuno, Z.C. Alfonso, J.K. Fraser, P. Benhaim, M.H. Hedrick, Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002)CrossRefPubMedCentral
21.
Zurück zum Zitat L. De Girolamo, D. Stanco, L. Salvatori, G. Coroniti, E. Arrigoni, G. Silecchia, M.A. Russo, S. Niada, E. Petrangeli, A.T. Brini, Stemness and osteogenic and adipogenic potential are differently impaired in subcutaneous and visceral adipose derived stem cells (ASCs) isolated from obese donors. Int. J. Immunopathol. Pharmacol. 26, 11–21 (2013)CrossRefPubMed L. De Girolamo, D. Stanco, L. Salvatori, G. Coroniti, E. Arrigoni, G. Silecchia, M.A. Russo, S. Niada, E. Petrangeli, A.T. Brini, Stemness and osteogenic and adipogenic potential are differently impaired in subcutaneous and visceral adipose derived stem cells (ASCs) isolated from obese donors. Int. J. Immunopathol. Pharmacol. 26, 11–21 (2013)CrossRefPubMed
22.
Zurück zum Zitat E. Petrangeli, G. Coroniti, A.T. Brini, L. de Girolamo, D. Stanco, S. Niada, G. Silecchia, E. Morgante, C. Lubrano, M.A. Russo, L. Salvatori, Hypoxia promotes the inflammatory response and stemness features in visceral fat stem cells from obese subjects. J. Cell. Physiol. 231, 668–679 (2016)CrossRefPubMed E. Petrangeli, G. Coroniti, A.T. Brini, L. de Girolamo, D. Stanco, S. Niada, G. Silecchia, E. Morgante, C. Lubrano, M.A. Russo, L. Salvatori, Hypoxia promotes the inflammatory response and stemness features in visceral fat stem cells from obese subjects. J. Cell. Physiol. 231, 668–679 (2016)CrossRefPubMed
23.
Zurück zum Zitat M.M. Ibrahim, Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010)CrossRefPubMed M.M. Ibrahim, Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010)CrossRefPubMed
24.
Zurück zum Zitat A. Chalkiadaki, L. Guarente, Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287–296 (2012)CrossRefPubMed A. Chalkiadaki, L. Guarente, Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287–296 (2012)CrossRefPubMed
25.
Zurück zum Zitat M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006)CrossRefPubMed M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006)CrossRefPubMed
26.
Zurück zum Zitat J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006)CrossRefPubMedPubMedCentral J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006)CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat L. Bordone, D. Cohen, A. Robinson, M.C. Motta, E. van Veen, A. Czopik, A.D. Steele, H. Crowe, S. Marmor, J. Luo, W. Gu, L. Guarente, SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007)CrossRefPubMed L. Bordone, D. Cohen, A. Robinson, M.C. Motta, E. van Veen, A. Czopik, A.D. Steele, H. Crowe, S. Marmor, J. Luo, W. Gu, L. Guarente, SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007)CrossRefPubMed
28.
Zurück zum Zitat A. Chalkiadaki, L. Guarente, High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180–188 (2012)CrossRefPubMedPubMedCentral A. Chalkiadaki, L. Guarente, High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180–188 (2012)CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Co.S. Costa, T.O. Hammes, F. Rohden, R. Margis, J.W. Bortolotto, A.V. Padoin, C.C. Mottin, R.M. Guaragna, SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes. Surg. 20, 633–639 (2010)CrossRef Co.S. Costa, T.O. Hammes, F. Rohden, R. Margis, J.W. Bortolotto, A.V. Padoin, C.C. Mottin, R.M. Guaragna, SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes. Surg. 20, 633–639 (2010)CrossRef
30.
Zurück zum Zitat S. Mariani, D. Fiore, S. Basciani, A. Persichetti, S. Contini, C. Lubrano, L. Salvatori, A. Lenzi, L. Gnessi, Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 49, 711–716 (2015)CrossRefPubMed S. Mariani, D. Fiore, S. Basciani, A. Persichetti, S. Contini, C. Lubrano, L. Salvatori, A. Lenzi, L. Gnessi, Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 49, 711–716 (2015)CrossRefPubMed
31.
Zurück zum Zitat H. Lee, S.H. Chu, J.Y. Park, H.K. Park, J.A. Im, J.W. Lee, Visceral adiposity is associated with SIRT1 expression in peripheral blood mononuclear cells: a pilot study. Endocr. J. 60, 1269–1273 (2013)CrossRefPubMed H. Lee, S.H. Chu, J.Y. Park, H.K. Park, J.A. Im, J.W. Lee, Visceral adiposity is associated with SIRT1 expression in peripheral blood mononuclear cells: a pilot study. Endocr. J. 60, 1269–1273 (2013)CrossRefPubMed
32.
Zurück zum Zitat H.Y. Cohen, C. Miller, K.J. Bitterman, N.R. Wall, B. Hekking, B. Kessler, K.T. Howitz, M. Gorospe, R. de Cabo, D.A. Sinclair, Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004)CrossRefPubMed H.Y. Cohen, C. Miller, K.J. Bitterman, N.R. Wall, B. Hekking, B. Kessler, K.T. Howitz, M. Gorospe, R. de Cabo, D.A. Sinclair, Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004)CrossRefPubMed
33.
Zurück zum Zitat F. Wang, M. Nguyen, F.X. Qin, Q. Tong, SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6, 505–514 (2007)CrossRef F. Wang, M. Nguyen, F.X. Qin, Q. Tong, SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6, 505–514 (2007)CrossRef
34.
Zurück zum Zitat S. Mariani, D. Fiore, A. Persichetti, S. Basciani, C. Lubrano, E. Poggiogalle, A. Genco, L.M. Donini, L. Gnessi, Circulating SIRT1 Increases after intragastric balloon fat loss in obese patients. Obes. Surg. 26, 1215–1220 (2016) S. Mariani, D. Fiore, A. Persichetti, S. Basciani, C. Lubrano, E. Poggiogalle, A. Genco, L.M. Donini, L. Gnessi, Circulating SIRT1 Increases after intragastric balloon fat loss in obese patients. Obes. Surg. 26, 1215–1220 (2016)
35.
Zurück zum Zitat J. Krishnan, C. Danzer, T. Simka, J. Ukropec, K.M. Walter, S. Kumpf, P. Mirtschink, B. Ukropcova, D. Gasperikova, T. Pedrazzini, W. Krek, Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes. Dev. 26, 259–270 (2012)CrossRefPubMedPubMedCentral J. Krishnan, C. Danzer, T. Simka, J. Ukropec, K.M. Walter, S. Kumpf, P. Mirtschink, B. Ukropcova, D. Gasperikova, T. Pedrazzini, W. Krek, Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes. Dev. 26, 259–270 (2012)CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat G. Tarantino, C. Finelli, F. Scopacasa, F. Pasanisi, F. Contaldo, D. Capone, S. Savastano, Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev. 2014, 920676 (2014)CrossRefPubMedPubMedCentral G. Tarantino, C. Finelli, F. Scopacasa, F. Pasanisi, F. Contaldo, D. Capone, S. Savastano, Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev. 2014, 920676 (2014)CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat K.M. Rothgiesser, S. Erener, S. Waibel, B. Lüscher, M.O. Hottiger, SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci. 123, 4251–4258 (2010)CrossRefPubMed K.M. Rothgiesser, S. Erener, S. Waibel, B. Lüscher, M.O. Hottiger, SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci. 123, 4251–4258 (2010)CrossRefPubMed
38.
Zurück zum Zitat T.L. Kawahara, E. Michishita, A.S. Adler, M. Damian, E. Berber, M. Lin, R.A. McCord, K.C. Ongaigui, L.D. Boxer, H.Y. Chang, K.F. Chua, SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136, 62–74 (2009)CrossRefPubMedCentral T.L. Kawahara, E. Michishita, A.S. Adler, M. Damian, E. Berber, M. Lin, R.A. McCord, K.C. Ongaigui, L.D. Boxer, H.Y. Chang, K.F. Chua, SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136, 62–74 (2009)CrossRefPubMedCentral
39.
Zurück zum Zitat F. Yeung, J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, M.W. Mayo, Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004)CrossRefPubMedPubMedCentral F. Yeung, J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, M.W. Mayo, Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004)CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat S. Rajendrasozhan, S.R. Yang, V.L. Kinnula, I. Rahman, SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177, 861–870 (2008)CrossRefPubMedPubMedCentral S. Rajendrasozhan, S.R. Yang, V.L. Kinnula, I. Rahman, SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177, 861–870 (2008)CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat C.A. Fernandes, L. Fievez, A.M. Neyrinck, N.M. Delzenne, F. Bureau, R. Vanbever, Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages. Biochem. Biophys. Res. Commun. 420, 857–861 (2012)CrossRefPubMed C.A. Fernandes, L. Fievez, A.M. Neyrinck, N.M. Delzenne, F. Bureau, R. Vanbever, Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages. Biochem. Biophys. Res. Commun. 420, 857–861 (2012)CrossRefPubMed
42.
Zurück zum Zitat A. Legutko, T. Marichal, L. Fiévez, D. Bedoret, A. Mayer, H. de Vries, L. Klotz, P.V. Drion, C. Heirman, D. Cataldo, R. Louis, K. Thielemans, F. Andris, O. Leo, P. Lekeux, C.J. Desmet, F. Bureau, Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-γ activity in dendritic cells. J. Immunol. 187, 4517–4529 (2011)CrossRef A. Legutko, T. Marichal, L. Fiévez, D. Bedoret, A. Mayer, H. de Vries, L. Klotz, P.V. Drion, C. Heirman, D. Cataldo, R. Louis, K. Thielemans, F. Andris, O. Leo, P. Lekeux, C.J. Desmet, F. Bureau, Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-γ activity in dendritic cells. J. Immunol. 187, 4517–4529 (2011)CrossRef
43.
Zurück zum Zitat F. Van Gool, M. Gallí, C. Gueydan, V. Kruys, P.P. Prevot, A. Bedalov, R. Mostoslavsky, F.W. Alt, T. De Smedt, O. Leo, Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15, 206–210 (2009)CrossRefPubMedPubMedCentral F. Van Gool, M. Gallí, C. Gueydan, V. Kruys, P.P. Prevot, A. Bedalov, R. Mostoslavsky, F.W. Alt, T. De Smedt, O. Leo, Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15, 206–210 (2009)CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat S. Bruzzone, F. Fruscione, S. Morando, T. Ferrando, A. Poggi, A. Garuti, A. D’Urso, M. Selmo, F. Benvenuto, M. Cea, G. Zoppoli, E. Moran, D. Soncini, A. Ballestrero, B. Sordat, F. Patrone, R. Mostoslavsky, A. Uccelli, A. Nencioni, Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One 4, e7897 (2009)CrossRefPubMedPubMedCentral S. Bruzzone, F. Fruscione, S. Morando, T. Ferrando, A. Poggi, A. Garuti, A. D’Urso, M. Selmo, F. Benvenuto, M. Cea, G. Zoppoli, E. Moran, D. Soncini, A. Ballestrero, B. Sordat, F. Patrone, R. Mostoslavsky, A. Uccelli, A. Nencioni, Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One 4, e7897 (2009)CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat H.N. Zhang, L. Li, P. Gao, H.Z. Chen, R. Zhang, Y.S. Wei, D.P. Liu, C.C. Liang, Involvement of the p65/RelA subunit of NF-kappaB in TNF-alpha-induced SIRT1 expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 397, 569–575 (2010)CrossRefPubMed H.N. Zhang, L. Li, P. Gao, H.Z. Chen, R. Zhang, Y.S. Wei, D.P. Liu, C.C. Liang, Involvement of the p65/RelA subunit of NF-kappaB in TNF-alpha-induced SIRT1 expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 397, 569–575 (2010)CrossRefPubMed
46.
Zurück zum Zitat J. Katto, N. Engel, W. Abbas, G. Herbein, U. Mahlknecht, Transcription factor NFκB regulates the expression of the histone deacetylase SIRT1. Clin. Epigenetics 5, 11 (2013)CrossRefPubMedPubMedCentral J. Katto, N. Engel, W. Abbas, G. Herbein, U. Mahlknecht, Transcription factor NFκB regulates the expression of the histone deacetylase SIRT1. Clin. Epigenetics 5, 11 (2013)CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat A.M. Sharma, B. Staels, Review: peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab. 92, 386–395 (2007)CrossRefPubMed A.M. Sharma, B. Staels, Review: peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab. 92, 386–395 (2007)CrossRefPubMed
48.
Zurück zum Zitat M. Okazaki, Y. Iwasaki, M. Nishiyama, T. Taguchi, M. Tsugita, S. Nakayama, M. Kambayashi, K. Hashimoto, Y. Terada, PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 57, 403–413 (2010)CrossRefPubMed M. Okazaki, Y. Iwasaki, M. Nishiyama, T. Taguchi, M. Tsugita, S. Nakayama, M. Kambayashi, K. Hashimoto, Y. Terada, PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 57, 403–413 (2010)CrossRefPubMed
49.
Zurück zum Zitat J.S. Hwang, W.J. Lee, E.S. Kang, S.A. Ham, T. Yoo, K.S. Paek, D.S. Lim, J.T. Do, H.G. Seo, Ligand-activated peroxisome proliferator-activated receptor-δ and -γ inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1. Cell. Death. Dis. 5, e1432 (2014)CrossRefPubMedPubMedCentral J.S. Hwang, W.J. Lee, E.S. Kang, S.A. Ham, T. Yoo, K.S. Paek, D.S. Lim, J.T. Do, H.G. Seo, Ligand-activated peroxisome proliferator-activated receptor-δ and -γ inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1. Cell. Death. Dis. 5, e1432 (2014)CrossRefPubMedPubMedCentral
Metadaten
Titel
Sirtuins 1–7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia
verfasst von
Stefania Mariani
Giuliana Di Rocco
Gabriele Toietta
Matteo A. Russo
Elisa Petrangeli
Luisa Salvatori
Publikationsdatum
14.11.2016
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 3/2017
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-1170-8

Weitere Artikel der Ausgabe 3/2017

Endocrine 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.