Skip to main content
Erschienen in: Endocrine 3/2018

02.05.2018 | Review

Microbiota and metabolic diseases

verfasst von: Alessia Pascale, Nicoletta Marchesi, Cristina Marelli, Adriana Coppola, Livio Luzi, Stefano Govoni, Andrea Giustina, Carmine Gazzaruso

Erschienen in: Endocrine | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

The microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi, living in different districts of the human body, such as the gastro-enteric tube, skin, mouth, respiratory system, and the vagina. Over 70% of the microbiota lives in the gastrointestinal tract in a mutually beneficial relationship with its host. The microbiota plays a major role in many metabolic functions, including modulation of glucose and lipid homeostasis, regulation of satiety, production of energy and vitamins. It exerts a role in the regulation of several biochemical and physiological mechanisms through the production of metabolites and substances. In addition, the microbiota has important anti-carcinogenetic and anti-inflammatory actions. There is growing evidence that any modification in the microbiota composition can lead to several diseases, including metabolic diseases, such as obesity and diabetes, and cardiovascular diseases. This is because alterations in the microbiota composition can cause insulin resistance, inflammation, vascular, and metabolic disorders. The causes of the microbiota alterations and the mechanisms by which microbiota modifications can act on the development of metabolic and cardiovascular diseases have been reported. Current and future preventive and therapeutic strategies to prevent these diseases by an adequate modulation of the microbiota have been also discussed.
Literatur
3.
Zurück zum Zitat A. Pingitore, E.S. Chambers, T. Hill, I.R. Maldonado, B. Liu, G. Bewick, D.J. Morrison, T. Preston, G.A. Wallis, C. Tedford, R. Castañera González, G.C. Huang, P. Choudhary, G. Frost, S.J. Persaud, The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265 (2017). https://doi.org/10.1111/dom.12811 PubMedCrossRef A. Pingitore, E.S. Chambers, T. Hill, I.R. Maldonado, B. Liu, G. Bewick, D.J. Morrison, T. Preston, G.A. Wallis, C. Tedford, R. Castañera González, G.C. Huang, P. Choudhary, G. Frost, S.J. Persaud, The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265 (2017). https://​doi.​org/​10.​1111/​dom.​12811 PubMedCrossRef
4.
Zurück zum Zitat F. Bäckhed, J. Roswall, Y. Peng, Q. Feng, H. Jia, P. Kovatcheva-Datchary, Y. Li, Y. Xia, H. Xie, H. Zhong, M.T. Khan, J. Zhang, J. Li, L. Xiao, J. Al-Aama, D. Zhang, Y.S. Lee, D. Kotowska, C. Colding, V. Tremaroli, Y. Yin, S. Bergman, X. Xu, L. Madsen, K. Kristiansen, J. Dahlgren, J. Wang, W. Jun, Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). https://doi.org/10.1016/j.chom.2015.04.004 PubMedCrossRef F. Bäckhed, J. Roswall, Y. Peng, Q. Feng, H. Jia, P. Kovatcheva-Datchary, Y. Li, Y. Xia, H. Xie, H. Zhong, M.T. Khan, J. Zhang, J. Li, L. Xiao, J. Al-Aama, D. Zhang, Y.S. Lee, D. Kotowska, C. Colding, V. Tremaroli, Y. Yin, S. Bergman, X. Xu, L. Madsen, K. Kristiansen, J. Dahlgren, J. Wang, W. Jun, Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). https://​doi.​org/​10.​1016/​j.​chom.​2015.​04.​004 PubMedCrossRef
5.
Zurück zum Zitat B.S. Ramakrishna, The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol. 41, S2–S6 (2007)CrossRef B.S. Ramakrishna, The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol. 41, S2–S6 (2007)CrossRef
10.
13.
Zurück zum Zitat L. Capurso, Il Microbiota intestinale. Recent. Prog. Med. 107, 257–266 (2016) L. Capurso, Il Microbiota intestinale. Recent. Prog. Med. 107, 257–266 (2016)
14.
Zurück zum Zitat E.F. Enright, C.G.M. Gahan, S.A. Joyce, B.T. Griffin, The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89, 375–382 (2016)PubMedPubMedCentral E.F. Enright, C.G.M. Gahan, S.A. Joyce, B.T. Griffin, The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89, 375–382 (2016)PubMedPubMedCentral
21.
26.
Zurück zum Zitat A. Everard, P.D. Cani, Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 15, 189–196 (2014)PubMedCrossRef A. Everard, P.D. Cani, Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 15, 189–196 (2014)PubMedCrossRef
27.
Zurück zum Zitat G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E.L. Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). https://doi.org/10.1038/ncomms4611 PubMedPubMedCentralCrossRef G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E.L. Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). https://​doi.​org/​10.​1038/​ncomms4611 PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat L.E.M. Willemsen, M.A. Koetsier, S.J.H. van Deventer, E.A.F. van Tol, Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003)PubMedPubMedCentralCrossRef L.E.M. Willemsen, M.A. Koetsier, S.J.H. van Deventer, E.A.F. van Tol, Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003)PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat J. Ni, G.D. Wu, L. Albenberg, V.T. Tomov, Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017)PubMedPubMedCentral J. Ni, G.D. Wu, L. Albenberg, V.T. Tomov, Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017)PubMedPubMedCentral
31.
Zurück zum Zitat H.J. Flint, E.A. Bayer, Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. New Y. Acad. Sci. 1125, 280–288 (2008)CrossRef H.J. Flint, E.A. Bayer, Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. New Y. Acad. Sci. 1125, 280–288 (2008)CrossRef
32.
Zurück zum Zitat P. van den Abbeele, P. Gérard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, M. Kleerebezem, E.G. Zoetendal, H. Smidt, W. Verstraete, T. van de Wiele, S. Possemiers, Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ. Microbiol. 13, 2667–2680 (2011). https://doi.org/10.1111/j.1462-2920.2011.02533.x PubMedCrossRef P. van den Abbeele, P. Gérard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, M. Kleerebezem, E.G. Zoetendal, H. Smidt, W. Verstraete, T. van de Wiele, S. Possemiers, Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ. Microbiol. 13, 2667–2680 (2011). https://​doi.​org/​10.​1111/​j.​1462-2920.​2011.​02533.​x PubMedCrossRef
36.
Zurück zum Zitat WHO | Obesity and overweight. (WHO, Geneva, Switzerland, 2018) WHO | Obesity and overweight. (WHO, Geneva, Switzerland, 2018)
50.
54.
Zurück zum Zitat H. Ghanim, S. Abuaysheh, C.L. Sia, K. Korzeniewski, A. Chaudhuri, J.M. Fernandez-Real, P. Dandona, Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 32, 2281–2287 (2009). https://doi.org/10.2337/dc09-0979 PubMedPubMedCentralCrossRef H. Ghanim, S. Abuaysheh, C.L. Sia, K. Korzeniewski, A. Chaudhuri, J.M. Fernandez-Real, P. Dandona, Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 32, 2281–2287 (2009). https://​doi.​org/​10.​2337/​dc09-0979 PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). https://doi.org/10.2337/db06-1491 PubMedCrossRef P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). https://​doi.​org/​10.​2337/​db06-1491 PubMedCrossRef
57.
Zurück zum Zitat E. Le Poul, C. Loison, S. Struyf, J.-Y. Springael, V. Lannoy, M.-E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, M. Parmentier, M. Detheux, Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003). https://doi.org/10.1074/jbc.M301403200 PubMedCrossRef E. Le Poul, C. Loison, S. Struyf, J.-Y. Springael, V. Lannoy, M.-E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, J. Van Damme, M. Parmentier, M. Detheux, Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003). https://​doi.​org/​10.​1074/​jbc.​M301403200 PubMedCrossRef
58.
Zurück zum Zitat A.J. Brown, S.M. Goldsworthy, A.A. Barnes, M.M. Eilert, L. Tcheang, D. Daniels, A.I. Muir, M.J. Wigglesworth, I. Kinghorn, N.J. Fraser, N.B. Pike, J.C. Strum, K.M. Steplewski, P.R. Murdock, J.C. Holder, F.H. Marshall, P.G. Szekeres, S. Wilson, D.M. Ignar, S.M. Foord, A. Wise, S.J. Dowell, The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003). https://doi.org/10.1074/jbc.M211609200 PubMedCrossRef A.J. Brown, S.M. Goldsworthy, A.A. Barnes, M.M. Eilert, L. Tcheang, D. Daniels, A.I. Muir, M.J. Wigglesworth, I. Kinghorn, N.J. Fraser, N.B. Pike, J.C. Strum, K.M. Steplewski, P.R. Murdock, J.C. Holder, F.H. Marshall, P.G. Szekeres, S. Wilson, D.M. Ignar, S.M. Foord, A. Wise, S.J. Dowell, The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003). https://​doi.​org/​10.​1074/​jbc.​M211609200 PubMedCrossRef
59.
Zurück zum Zitat B.S. Samuel, A. Shaito, T. Motoike, F.E. Rey, F. Backhed, J.K. Manchester, R.E. Hammer, S.C. Williams, J. Crowley, M. Yanagisawa, J.I. Gordon, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. 105, 16767–16772 (2008)PubMedCrossRef B.S. Samuel, A. Shaito, T. Motoike, F.E. Rey, F. Backhed, J.K. Manchester, R.E. Hammer, S.C. Williams, J. Crowley, M. Yanagisawa, J.I. Gordon, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. 105, 16767–16772 (2008)PubMedCrossRef
61.
Zurück zum Zitat V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. Van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, J.I. Gordon, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). https://doi.org/10.1126/science.1241214 PubMedCrossRef V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. Van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, J.I. Gordon, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). https://​doi.​org/​10.​1126/​science.​1241214 PubMedCrossRef
64.
Zurück zum Zitat WHO Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. (WHO, Geneva, Switzerland, 2013) WHO Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. (WHO, Geneva, Switzerland, 2013)
66.
Zurück zum Zitat H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L.M. Olsson, M. Serino, M. Planas-Fèlix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernàndez-Real, F. Bäckhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). https://doi.org/10.1038/nm.4345 PubMedCrossRef H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L.M. Olsson, M. Serino, M. Planas-Fèlix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernàndez-Real, F. Bäckhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). https://​doi.​org/​10.​1038/​nm.​4345 PubMedCrossRef
74.
Zurück zum Zitat S. Devaraj, P. Hemarajata, J. Versalovic, The human gut microbiome and body metabolism: Implications for obesity and diabetes. Clin. Chem. 59, 617–628 (2013)PubMedPubMedCentralCrossRef S. Devaraj, P. Hemarajata, J. Versalovic, The human gut microbiome and body metabolism: Implications for obesity and diabetes. Clin. Chem. 59, 617–628 (2013)PubMedPubMedCentralCrossRef
75.
76.
Zurück zum Zitat A. Vrieze, E. Van Nood, F. Holleman, J. Salojärvi, R.S. Kootte, J.F.W.M. Bartelsman, G.M. Dallinga-Thie, M.T. Ackermans, M.J. Serlie, R. Oozeer, M. Derrien, A. Druesne, J.E.T. Van Hylckama Vlieg, V.W. Bloks, A.K. Groen, H.G.H.J. Heilig, E.G. Zoetendal, E.S. Stroes, W.M. De Vos, J.B.L. Hoekstra, M. Nieuwdorp, Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–6.e7 (2012). https://doi.org/10.1053/j.gastro.2012.06.031 PubMedCrossRef A. Vrieze, E. Van Nood, F. Holleman, J. Salojärvi, R.S. Kootte, J.F.W.M. Bartelsman, G.M. Dallinga-Thie, M.T. Ackermans, M.J. Serlie, R. Oozeer, M. Derrien, A. Druesne, J.E.T. Van Hylckama Vlieg, V.W. Bloks, A.K. Groen, H.G.H.J. Heilig, E.G. Zoetendal, E.S. Stroes, W.M. De Vos, J.B.L. Hoekstra, M. Nieuwdorp, Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–6.e7 (2012). https://​doi.​org/​10.​1053/​j.​gastro.​2012.​06.​031 PubMedCrossRef
83.
Zurück zum Zitat K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A. Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore, H. Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S. Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). https://doi.org/10.1038/nature15766 PubMedPubMedCentralCrossRef K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A. Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore, H. Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S. Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). https://​doi.​org/​10.​1038/​nature15766 PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat N.M. Maruthur, E. Tseng, S. Hutfless, L.M. Wilson, C. Suarez-Cuervo, Z. Berger, Y. Chu, E. Iyoha, J.B. Segal, S. Bolen, Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 164, 740–751 (2016)PubMedCrossRef N.M. Maruthur, E. Tseng, S. Hutfless, L.M. Wilson, C. Suarez-Cuervo, Z. Berger, Y. Chu, E. Iyoha, J.B. Segal, S. Bolen, Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 164, 740–751 (2016)PubMedCrossRef
85.
Zurück zum Zitat D. Kopelman, I. Caterson, J. Michael, W. HD, Clinical obesity in adults and children. (2009) D. Kopelman, I. Caterson, J. Michael, W. HD, Clinical obesity in adults and children. (2009)
86.
Zurück zum Zitat K.M. Levri, E. Slaymaker, A. Last, J. Yeh, J. Ference, F. D’Amico, S.A. Wilson, Metformin as treatment for overweight and obese adults: A systematic review. Ann. Fam. Med. 3, 457–461 (2005)PubMedPubMedCentralCrossRef K.M. Levri, E. Slaymaker, A. Last, J. Yeh, J. Ference, F. D’Amico, S.A. Wilson, Metformin as treatment for overweight and obese adults: A systematic review. Ann. Fam. Med. 3, 457–461 (2005)PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat U. Uusitalo, X. Liu, J. Yang, C.A. Aronsson, S. Hummel, M. Butterworth, Å. Lernmark, M. Rewers, W. Hagopian, J.-X. She, O. Simell, J. Toppari, A.G. Ziegler, B. Akolkar, J. Krischer, J.M. Norris, S.M. Virtanen; TEDDY Study Group, Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 33612, 1–9 (2015). https://doi.org/10.1001/jamapediatrics.2015.2757 CrossRef U. Uusitalo, X. Liu, J. Yang, C.A. Aronsson, S. Hummel, M. Butterworth, Å. Lernmark, M. Rewers, W. Hagopian, J.-X. She, O. Simell, J. Toppari, A.G. Ziegler, B. Akolkar, J. Krischer, J.M. Norris, S.M. Virtanen; TEDDY Study Group, Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 33612, 1–9 (2015). https://​doi.​org/​10.​1001/​jamapediatrics.​2015.​2757 CrossRef
93.
94.
Zurück zum Zitat R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li, J.D. Smith, J.A. Didonato, J. Chen, H. Li, G.D. Wu, J.D. Lewis, M. Warrier, J.M. Brown, R.M. Krauss, W.H.W. Tang, F.D. Bushman, A.J. Lusis, S.L. Hazen, Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). https://doi.org/10.1038/nm.3145 PubMedPubMedCentralCrossRef R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, E.B. Britt, X. Fu, Y. Wu, L. Li, J.D. Smith, J.A. Didonato, J. Chen, H. Li, G.D. Wu, J.D. Lewis, M. Warrier, J.M. Brown, R.M. Krauss, W.H.W. Tang, F.D. Bushman, A.J. Lusis, S.L. Hazen, Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). https://​doi.​org/​10.​1038/​nm.​3145 PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat W.H.W. Tang, Z. Wang, Y. Fan, B. Levison, J.E. Hazen, L.M. Donahue, Y. Wu, S.L. Hazen, Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014)PubMedCrossRef W.H.W. Tang, Z. Wang, Y. Fan, B. Levison, J.E. Hazen, L.M. Donahue, Y. Wu, S.L. Hazen, Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014)PubMedCrossRef
97.
98.
Zurück zum Zitat R. Ostan, M.C. Béné, L. Spazzafumo, A. Pinto, L.M. Donini, F. Pryen, Z. Charrouf, L. Valentini, H. Lochs, I. Bourdel-Marchasson, C. Blanc-Bisson, F. Buccolini, P. Brigidi, C. Franceschi, P.A. d’Alessio, Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin. Nutr. 35, 812–818 (2016). https://doi.org/10.1016/j.clnu.2015.06.010 PubMedCrossRef R. Ostan, M.C. Béné, L. Spazzafumo, A. Pinto, L.M. Donini, F. Pryen, Z. Charrouf, L. Valentini, H. Lochs, I. Bourdel-Marchasson, C. Blanc-Bisson, F. Buccolini, P. Brigidi, C. Franceschi, P.A. d’Alessio, Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin. Nutr. 35, 812–818 (2016). https://​doi.​org/​10.​1016/​j.​clnu.​2015.​06.​010 PubMedCrossRef
99.
Zurück zum Zitat J.L. Griffin, X. Wang, E. Stanley, Does Our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ. Cardiovasc Genet. 8, 187–191 (2015)PubMedPubMedCentralCrossRef J.L. Griffin, X. Wang, E. Stanley, Does Our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ. Cardiovasc Genet. 8, 187–191 (2015)PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat J. Joseph, J. Loscalzo, Nutri(meta)genetics and cardiovascular disease: novel concepts in the interaction of diet and genomic variation. Curr. Atherosler Rep. 17, 505 (2015) J. Joseph, J. Loscalzo, Nutri(meta)genetics and cardiovascular disease: novel concepts in the interaction of diet and genomic variation. Curr. Atherosler Rep. 17, 505 (2015)
103.
105.
Zurück zum Zitat M.H. Floch, Probiotics and prebiotics. Gastroenterol. Hepatol. (N. Y) 10, 680–681 (2014) M.H. Floch, Probiotics and prebiotics. Gastroenterol. Hepatol. (N. Y) 10, 680–681 (2014)
106.
Zurück zum Zitat M.C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E.O. Verger, B.D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.-E. Dumas, S.W. Rizkalla, J. Doré, P.D. Cani, K. Clément, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016)PubMedCrossRef M.C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E.O. Verger, B.D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M.-E. Dumas, S.W. Rizkalla, J. Doré, P.D. Cani, K. Clément, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016)PubMedCrossRef
107.
108.
Zurück zum Zitat L.J. Cohen, D. Esterhazy, S.-H. Kim, C. Lemetre, R.R. Aguilar, E.A. Gordon, A.J. Pickard, J.R. Cross, A.B. Emiliano, S.M. Han, J. Chu, X. Vila-Farres, J. Kaplitt, A. Rogoz, P.Y. Calle, C. Hunter, J.K. Bitok, S.F. Brady, Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017). https://doi.org/10.1038/nature23874 PubMedPubMedCentralCrossRef L.J. Cohen, D. Esterhazy, S.-H. Kim, C. Lemetre, R.R. Aguilar, E.A. Gordon, A.J. Pickard, J.R. Cross, A.B. Emiliano, S.M. Han, J. Chu, X. Vila-Farres, J. Kaplitt, A. Rogoz, P.Y. Calle, C. Hunter, J.K. Bitok, S.F. Brady, Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017). https://​doi.​org/​10.​1038/​nature23874 PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Z.Z.R. Hamady, N. Scott, M.D. Farrar, M. Wadhwa, P. Dilger, T.R. Whitehead, R. Thorpe, K.T. Holland, J.P.A. Lodge, S.R. Carding, Treatment of colitis with a commensal gut bacterium engineered to secrete human tgf-β1 under the control of dietary xylan 1. Inflamm. Bowel. Dis. 17, 1925–1935 (2011). https://doi.org/10.1002/ibd.21565 PubMedCrossRef Z.Z.R. Hamady, N. Scott, M.D. Farrar, M. Wadhwa, P. Dilger, T.R. Whitehead, R. Thorpe, K.T. Holland, J.P.A. Lodge, S.R. Carding, Treatment of colitis with a commensal gut bacterium engineered to secrete human tgf-β1 under the control of dietary xylan 1. Inflamm. Bowel. Dis. 17, 1925–1935 (2011). https://​doi.​org/​10.​1002/​ibd.​21565 PubMedCrossRef
111.
Zurück zum Zitat K. Vandenbroucke, H. De Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier, P. Rottiers, Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010). https://doi.org/10.1038/mi.2009.116 PubMedCrossRef K. Vandenbroucke, H. De Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier, P. Rottiers, Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010). https://​doi.​org/​10.​1038/​mi.​2009.​116 PubMedCrossRef
112.
Zurück zum Zitat Z.Z.R. Hamady, N. Scott, M.D. Farrar, J.P.A. Lodge, K.T. Holland, T. Whitehead, S.R. Carding, Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59, 461–469 (2010)PubMedCrossRef Z.Z.R. Hamady, N. Scott, M.D. Farrar, J.P.A. Lodge, K.T. Holland, T. Whitehead, S.R. Carding, Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59, 461–469 (2010)PubMedCrossRef
113.
Zurück zum Zitat J.P. Motta, L.G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rolland, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat, J.P. Vinel, L. Alric, E. Mas, J.M. Sallenave, P. Langella, N. Vergnolle, Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144 (2012). https://doi.org/10.1126/scitranslmed.3004212 PubMedCrossRef J.P. Motta, L.G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rolland, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat, J.P. Vinel, L. Alric, E. Mas, J.M. Sallenave, P. Langella, N. Vergnolle, Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144 (2012). https://​doi.​org/​10.​1126/​scitranslmed.​3004212 PubMedCrossRef
116.
Zurück zum Zitat M. De Vrese, J. Schrezenmeir, Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111, 1–66 (2008)PubMed M. De Vrese, J. Schrezenmeir, Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111, 1–66 (2008)PubMed
118.
Zurück zum Zitat Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, Y. Wu, P. Schauer, J.D. Smith, H. Allayee, W.H.W. Tang, J.A. Didonato, A.J. Lusis, S.L. Hazen, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–65 (2011). https://doi.org/10.1038/nature09922 PubMedPubMedCentralCrossRef Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, Y. Wu, P. Schauer, J.D. Smith, H. Allayee, W.H.W. Tang, J.A. Didonato, A.J. Lusis, S.L. Hazen, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–65 (2011). https://​doi.​org/​10.​1038/​nature09922 PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat A. Coppola, L. Sasso, A. Bagnasco, A. Giustina, C. Gazzaruso, The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine 53, 18–27 (2016)PubMedCrossRef A. Coppola, L. Sasso, A. Bagnasco, A. Giustina, C. Gazzaruso, The role of patient education in the prevention and management of type 2 diabetes: an overview. Endocrine 53, 18–27 (2016)PubMedCrossRef
120.
Zurück zum Zitat V. Tosti, B. Bertozzi, L. Fontana, Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 73, 318–326 (2018)PubMedCrossRef V. Tosti, B. Bertozzi, L. Fontana, Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 73, 318–326 (2018)PubMedCrossRef
121.
Zurück zum Zitat T.T.B. Nguyen, Y.Y. Jin, H.J. Chung, S.T. Hong, Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules 22(10), E1795 (2017)PubMedCrossRef T.T.B. Nguyen, Y.Y. Jin, H.J. Chung, S.T. Hong, Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules 22(10), E1795 (2017)PubMedCrossRef
127.
Zurück zum Zitat Y.S. Kim, J.A. Milner, Dietary modulation of colon cancer risk. J. Nutr. 137, 2576S–2579S (2007)PubMedCrossRef Y.S. Kim, J.A. Milner, Dietary modulation of colon cancer risk. J. Nutr. 137, 2576S–2579S (2007)PubMedCrossRef
129.
Zurück zum Zitat M. Kraatz, R.J. Wallace, L. Svensson, Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int. J. Syst. Evol. Microbiol. 61, 795–803 (2011). https://doi.org/10.1099/ijs.0.022954-0 PubMedCrossRef M. Kraatz, R.J. Wallace, L. Svensson, Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int. J. Syst. Evol. Microbiol. 61, 795–803 (2011). https://​doi.​org/​10.​1099/​ijs.​0.​022954-0 PubMedCrossRef
Metadaten
Titel
Microbiota and metabolic diseases
verfasst von
Alessia Pascale
Nicoletta Marchesi
Cristina Marelli
Adriana Coppola
Livio Luzi
Stefano Govoni
Andrea Giustina
Carmine Gazzaruso
Publikationsdatum
02.05.2018
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 3/2018
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-018-1605-5

Weitere Artikel der Ausgabe 3/2018

Endocrine 3/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.