Skip to main content
Erschienen in: Forensic Science, Medicine and Pathology 4/2017

18.08.2017 | Original Article

Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study

verfasst von: Lars C. Ebert, Jakob Heimer, Wolf Schweitzer, Till Sieberth, Anja Leipner, Michael Thali, Garyfalia Ampanozi

Erschienen in: Forensic Science, Medicine and Pathology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Post mortem computed tomography (PMCT) can be used as a triage tool to better identify cases with a possibly non-natural cause of death, especially when high caseloads make it impossible to perform autopsies on all cases. Substantial data can be generated by modern medical scanners, especially in a forensic setting where the entire body is documented at high resolution. A solution for the resulting issues could be the use of deep learning techniques for automatic analysis of radiological images. In this article, we wanted to test the feasibility of such methods for forensic imaging by hypothesizing that deep learning methods can detect and segment a hemopericardium in PMCT. For deep learning image analysis software, we used the ViDi Suite 2.0. We retrospectively selected 28 cases with, and 24 cases without, hemopericardium. Based on these data, we trained two separate deep learning networks. The first one classified images into hemopericardium/not hemopericardium, and the second one segmented the blood content. We randomly selected 50% of the data for training and 50% for validation. This process was repeated 20 times. The best performing classification network classified all cases of hemopericardium from the validation images correctly with only a few false positives. The best performing segmentation network would tend to underestimate the amount of blood in the pericardium, which is the case for most networks. This is the first study that shows that deep learning has potential for automated image analysis of radiological images in forensic medicine.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat O’Donnell C. An image of sudden death: utility of routine post-mortem computed tomography scanning in medico-legal autopsy practice. Diagn Histopathol. 2010;16:552–5.CrossRef O’Donnell C. An image of sudden death: utility of routine post-mortem computed tomography scanning in medico-legal autopsy practice. Diagn Histopathol. 2010;16:552–5.CrossRef
2.
Zurück zum Zitat Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.CrossRefPubMed Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.CrossRefPubMed
3.
Zurück zum Zitat Andriole KP, Wolfe JM, Khorasani R, Treves ST, Getty DJ, Jacobson FL, et al. Optimizing analysis, visualization, and navigation of large image data sets: one 5000-section CT scan can ruin your whole day. Radiology. 2011;259:346–62.CrossRefPubMed Andriole KP, Wolfe JM, Khorasani R, Treves ST, Getty DJ, Jacobson FL, et al. Optimizing analysis, visualization, and navigation of large image data sets: one 5000-section CT scan can ruin your whole day. Radiology. 2011;259:346–62.CrossRefPubMed
4.
Zurück zum Zitat Christe A, Flach P, Ross S, Spendlove D, Bolliger S, Vock P, et al. Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med Tokyo Jpn. 2010;12:215–22.CrossRef Christe A, Flach P, Ross S, Spendlove D, Bolliger S, Vock P, et al. Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med Tokyo Jpn. 2010;12:215–22.CrossRef
6.
Zurück zum Zitat Yegnanarayana B. Artificial neural networks. New Delhi: PHI Learning Pvt Ltd.; 2009. Yegnanarayana B. Artificial neural networks. New Delhi: PHI Learning Pvt Ltd.; 2009.
7.
8.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef
9.
Zurück zum Zitat Widrow B, Lehr MA. Thirty years of adaptive neural networks: perceptron, Madaline, and backpropagation. Proc IEEE. 1990;78:1415–42.CrossRef Widrow B, Lehr MA. Thirty years of adaptive neural networks: perceptron, Madaline, and backpropagation. Proc IEEE. 1990;78:1415–42.CrossRef
10.
Zurück zum Zitat LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, et al. Handwritten digit recognition with a back-propagation network. In: Touretzky DS, editor. Advances in neural information processing systems 2. Los Altos: Morgan-Kaufmann; 1990. p. 396–404. LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, et al. Handwritten digit recognition with a back-propagation network. In: Touretzky DS, editor. Advances in neural information processing systems 2. Los Altos: Morgan-Kaufmann; 1990. p. 396–404.
11.
Zurück zum Zitat Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer SC, Kolen JF, editors. A field guide to dynamical recurrent neural networks. IEEE Press; 2001, pp. 1-15. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer SC, Kolen JF, editors. A field guide to dynamical recurrent neural networks. IEEE Press; 2001, pp. 1-15.
12.
Zurück zum Zitat Mittal S. A survey of techniques for approximate computing. ACM Comput Surv. 2016;48:1–33. Mittal S. A survey of techniques for approximate computing. ACM Comput Surv. 2016;48:1–33.
13.
Zurück zum Zitat Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.CrossRefPubMed Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.CrossRefPubMed
14.
Zurück zum Zitat Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2016;36:61–78.CrossRefPubMed Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2016;36:61–78.CrossRefPubMed
15.
Zurück zum Zitat Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. 2015 [cited 2017 Jan 4]. pp. 94140V–94140V–7. Available from:. doi: 10.1117/12.2083124 Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. 2015 [cited 2017 Jan 4]. pp. 94140V–94140V–7. Available from:. doi: 10.​1117/​12.​2083124
16.
Zurück zum Zitat Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 2016;61:8676–98.CrossRefPubMed Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 2016;61:8676–98.CrossRefPubMed
17.
Zurück zum Zitat Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging. 2016;35:1352–63.CrossRef Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging. 2016;35:1352–63.CrossRef
18.
Zurück zum Zitat Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35:1322–31.CrossRefPubMed Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35:1322–31.CrossRefPubMed
19.
Zurück zum Zitat Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, Zhang S, et al. Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging. 2016;35:1332–43.CrossRef Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, Zhang S, et al. Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging. 2016;35:1332–43.CrossRef
20.
Zurück zum Zitat Greenspan H, Ginneken B van, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016;35:1153–1159. Greenspan H, Ginneken B van, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016;35:1153–1159.
21.
Zurück zum Zitat Filograna L, Laberke P, Ampanozi G, Schweitzer W, Thali MJ, Bonomo L. Role of post-mortem computed tomography (PMCT) in the assessment of the challenging diagnosis of pericardial tamponade as cause of death in cases with hemopericardium. Radiol Med (Torino). 2015;120:723–30.CrossRef Filograna L, Laberke P, Ampanozi G, Schweitzer W, Thali MJ, Bonomo L. Role of post-mortem computed tomography (PMCT) in the assessment of the challenging diagnosis of pericardial tamponade as cause of death in cases with hemopericardium. Radiol Med (Torino). 2015;120:723–30.CrossRef
22.
Zurück zum Zitat Restrepo CS, Lemos DF, Lemos JA, Velasquez E, Diethelm L, Ovella TA, et al. Imaging findings in cardiac tamponade with emphasis on CT. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27:1595–610. Restrepo CS, Lemos DF, Lemos JA, Velasquez E, Diethelm L, Ovella TA, et al. Imaging findings in cardiac tamponade with emphasis on CT. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27:1595–610.
23.
Zurück zum Zitat Holmes DR, Nishimura R, Fountain R, Turi ZG. Iatrogenic pericardial effusion and tamponade in the percutaneous intracardiac intervention era. J Am Coll Cardiol Intv. 2009;2:705–17.CrossRef Holmes DR, Nishimura R, Fountain R, Turi ZG. Iatrogenic pericardial effusion and tamponade in the percutaneous intracardiac intervention era. J Am Coll Cardiol Intv. 2009;2:705–17.CrossRef
24.
25.
Zurück zum Zitat Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol. 2017;52:434–40.CrossRef Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol. 2017;52:434–40.CrossRef
26.
Zurück zum Zitat Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Legal Med. 2012;19:126–31.CrossRef Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Legal Med. 2012;19:126–31.CrossRef
27.
Zurück zum Zitat Buckland M, Gey F. The relationship between recall and precision. J Am Soc Inf Sci. 1994;45:12–9.CrossRef Buckland M, Gey F. The relationship between recall and precision. J Am Soc Inf Sci. 1994;45:12–9.CrossRef
28.
Zurück zum Zitat Chinchor N. MUC-4 evaluation metrics. Proc 4th Conf Message Underst [Internet]. Stroudsburg, PA: Association for Computational Linguistics; 1992 [cited 2017 Jul 24]. p. 22–29. doi: 10.3115/1072064.1072067 Chinchor N. MUC-4 evaluation metrics. Proc 4th Conf Message Underst [Internet]. Stroudsburg, PA: Association for Computational Linguistics; 1992 [cited 2017 Jul 24]. p. 22–29. doi: 10.​3115/​1072064.​1072067
29.
Zurück zum Zitat Huang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Prog Biomed. 2017;143:67–74.CrossRef Huang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Prog Biomed. 2017;143:67–74.CrossRef
30.
Zurück zum Zitat Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Prog Biomed. 2017;138:49–56.CrossRef Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Prog Biomed. 2017;138:49–56.CrossRef
31.
Zurück zum Zitat Ruder TD, Thali Y, Schindera ST, Dalla Torre SA, Zech W-D, Thali MJ, et al. How reliable are Hounsfield-unit measurements in forensic radiology? Forensic Sci Int. 2012;220:219–23.CrossRefPubMed Ruder TD, Thali Y, Schindera ST, Dalla Torre SA, Zech W-D, Thali MJ, et al. How reliable are Hounsfield-unit measurements in forensic radiology? Forensic Sci Int. 2012;220:219–23.CrossRefPubMed
32.
Zurück zum Zitat Schulze C, Hoppe H, Schweitzer W, Schwendener N, Grabherr S, Jackowski C. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int. 2013;233:90–8.CrossRefPubMed Schulze C, Hoppe H, Schweitzer W, Schwendener N, Grabherr S, Jackowski C. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int. 2013;233:90–8.CrossRefPubMed
33.
Zurück zum Zitat Ampanozi G, Hatch GM, Ruder TD, Flach PM, Germerott T, Thali MJ, et al. Post-mortem virtual estimation of free abdominal blood volume. Eur J Radiol. 2012;81:2133–6.CrossRefPubMed Ampanozi G, Hatch GM, Ruder TD, Flach PM, Germerott T, Thali MJ, et al. Post-mortem virtual estimation of free abdominal blood volume. Eur J Radiol. 2012;81:2133–6.CrossRefPubMed
Metadaten
Titel
Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study
verfasst von
Lars C. Ebert
Jakob Heimer
Wolf Schweitzer
Till Sieberth
Anja Leipner
Michael Thali
Garyfalia Ampanozi
Publikationsdatum
18.08.2017
Verlag
Springer US
Erschienen in
Forensic Science, Medicine and Pathology / Ausgabe 4/2017
Print ISSN: 1547-769X
Elektronische ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-017-9906-1

Weitere Artikel der Ausgabe 4/2017

Forensic Science, Medicine and Pathology 4/2017 Zur Ausgabe

Forensic Forum

Body farms

Forensic Forum

Body farms

Forensic Forum

Body farms

Neu im Fachgebiet Pathologie