Skip to main content

Advertisement

Log in

Neuroprotective Role of Antidiabetic Drug Metformin Against Apoptotic Cell Death in Primary Cortical Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oxidative damage has been reported to be involved in the pathogenesis of diabetic neuropathy and neurodegenerative diseases. Recent evidence suggests that the antidiabetic drug metformin prevents oxidative stress-related cellular death in non-neuronal cell lines. In this report, we point to the direct neuroprotective effect of metformin, using the etoposide-induced cell death model. The exposure of intact primary neurons to this cytotoxic insult induced permeability transition pore (PTP) opening, the dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c release, and subsequent death. More importantly, metformin, together with the PTP classical inhibitor cyclosporin A (CsA), strongly mitigated the activation of this apoptotic cascade. Furthermore, the general antioxidant N-acetyl-l-cysteine also prevented etoposide-promoted neuronal death. In addition, metformin was shown to delay CsA-sensitive PTP opening in permeabilized neurons, as triggered by a calcium overload, probably through its mild inhibitory effect on the respiratory chain complex I. We conclude that (1) etoposide-induced neuronal death is partly attributable to PTP opening and the disruption of ΔΨm, in association with the emergence of oxidative stress, and (2) metformin inhibits this PTP opening-driven commitment to death. We thus propose that metformin, beyond its antihyperglycemic role, can also function as a new therapeutic tool for diabetes-associated neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ΔΨm:

mitochondrial membrane potential

AMPK:

AMP-activated protein kinase

CsA:

cyclosporin A

NAC:

N-acetyl-l-cysteine

PI:

propidium iodide

PTP:

permeability transition pore

TMRM:

tetramethyl-rhodamine methyl ester

References

  • Almeida, A., Moncada, S., & Bolanos, J. P. (2004). Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology, 6, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10, S18–S25.

    Article  PubMed  Google Scholar 

  • Baines, C. P., Kaiser, R. A., & Purcell, N. H., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434, 658–662.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, L. E., Van Bockstaele, E. J., Sul, J. Y., Takano, H., Haydon, P. G., & Eberwine, J. H. (2006). Elk-1 associates with the mitochondrial permeability transition pore complex in neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 5155–5160.

    Article  PubMed  CAS  Google Scholar 

  • Batandier, C., Guigas, B., & Detaille, D., et al. (2006). The ROS production induced by a reverse-electron flux at respiratory chain complex I is hampered by metformin. J. Biomembr. Bioenerg., 38, 33–42.

    Article  CAS  Google Scholar 

  • Bolanos, J. P., Almeida, A., & Stewart, V., et al. (1997). Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. Journal of Neurochemistry, 68, 2227–2240.

    Article  PubMed  CAS  Google Scholar 

  • Brunmair, B., Staniek, K., & Gras, F., et al. (2004). Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic action. Diabetes, 53, 1052–1059.

    Article  PubMed  CAS  Google Scholar 

  • Chauvin, C., De Oliveira, F., Ronot, X., Mousseau, M., Le, , verve, X., & Fontaine, E. (2001). Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. Journal of Biological Chemistry, 276, 41394–41398.

    Article  PubMed  CAS  Google Scholar 

  • Chong, Z. Z., Li, F., & Maiese, K. (2005). Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenarative disease. Progress in Neurobiology, 75, 207–246.

    Article  PubMed  CAS  Google Scholar 

  • Custodio, J. B., Cardoso, C. M., & Almeida, L. M. (2002). Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: Implications in the prevention of etoposide-induced apoptosis. Chemico-Biological Interactions, 140, 169–184.

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Esteban, M., Martin-Zanca, D., Andres-Martin, L., Almeida, A., & Bolanos, J. P. (2007). Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/akt neuroprotective signaling pathway. Journal of Neurochemistry, 102, 194–205.

    Article  PubMed  CAS  Google Scholar 

  • Detaille, D., Guigas, B., & Chauvin, C., et al. (2005). Metformin prevents high glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes, 54, 2179–2187.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Hernandez, J. I., Moncada, S., Bolanos, J. P., & Almeida, A. (2007). Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death and Differentiation, 14, 1211–1221.

    Article  PubMed  CAS  Google Scholar 

  • Duchen, M. R. (2004). Roles of mitochondria in health and disease. Diabetes, 53, S96–S102.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, P. J., Kratz, K. M., & Lehman, K. A., et al. (1991). The rochester diabetic neuropathy study: Design, criteria for types of neuropathy, selection bias, and reproducibility of neuropathic tests. Neurology, 41, 799–807.

    PubMed  CAS  Google Scholar 

  • El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., & Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. Journal of Biological Chemistry, 275, 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, E., Eriksson, O., Ichas, F., & Bernardi, P. (1998). Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex I. Journal of Biological Chemistry, 273, 12662–12668.

    Article  PubMed  CAS  Google Scholar 

  • Forte, M., & Bernardi, P. (2005). Genetic dissection of the permeability transition pore. Journal of Bioenergetics and Biomembranes, 37, 121–128.

    Article  PubMed  CAS  Google Scholar 

  • Gillessen, T., Grasshoff, C., & Szinicz, L. (2002). Mitochondrial permeability transition can be directly monitored in living neurons. Biomedicine & Pharmacotherapy, 56, 186–193.

    Article  CAS  Google Scholar 

  • Gilman, C. P., Chan, S. L., Guo, Z., Zhu, X., Greig, N., & Mattson, M. P. (2003). p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromolecular Medecine, 3, 159–172.

    Article  CAS  Google Scholar 

  • Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Guigas, B., Detaille, D., & Chauvin, C., et al. (2004). Metformin inhibits mitochondrial permeability transition and cell death: A pharmacological in vitro study. Biochemical Journal, 382, 877–884.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S. A., Gadalla, A. E., Olsen, G. S., & Hardie, D. G. (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes, 51, 2420–2425.

    Article  PubMed  CAS  Google Scholar 

  • Karpinich, N. O., Tafani, M., Rothman, R. J., Russo, M. A., & Farber, J. L. (2002). The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. Journal of Biological Chemistry, 277, 16547–16552.

    Article  PubMed  CAS  Google Scholar 

  • Karpinich, N. O., Tafani, M., Schneider, T., Russo, M. A., & Farber, J. L. (2006). The course of etoposide-induced apoptosis in Jurkat cells lacking p53 and bax. Journal of Cellular Physiology, 208, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., & Reed, J. C. (2000). Mitochondrial control of cell death. Nature Medicine, 6, 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Kurosu, T., Fukuda, T., Miki, T., & Miura, O. (2003). Bcl6 overexpression prevents increase in reactive oxygen species and inhibits apoptosis induced by chemotherapeutic reagents in B-cell lymphoma cells. Oncogene, 22, 4459–4468.

    Article  PubMed  CAS  Google Scholar 

  • Leverve, X. M., Guigas, B., & Detaille, D., et al. (2003). Mitochondrial metabolism and type-2 diabetes: A specific target of metformin. Diabetes & Metabolism, 29, 6S88–6S94.

    Article  CAS  Google Scholar 

  • Ma, T. C., Buescher, J. L., & Oatis, B., et al. (2007). Metformin therapy in a transgenic mouse model of Huntington’s disease. Neuroscience Letters, 411, 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., & Kroemer, G. (2003). Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Molecular Medicine, 9, 196–205.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, M., Kashiwagi, K., & Ohta, J., et al. (1994). Etoposide induces programmed death in neurons cultured from the fetal rat central nervous system. Brain Research, 641, 350–352.

    Article  PubMed  CAS  Google Scholar 

  • Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex I of the mitochondrial respiratory chain. Biochemical Journal, 348, 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Panov, A. V., Gutekunst, C.-A., & Leavitt, B. R., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature Neuroscience, 5, 731–736.

    PubMed  CAS  Google Scholar 

  • Pham, N.-U., & Hedley, D. W. (2001). Respiratory chain-generated oxidative stress following treatment of leukemic blasts with DNA-damaging agents. Experimental Cell Research, 264, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Petronilli, V., Miotto, G., & Canton, M., et al. (1999). Transient and long-lasting openings of the mitochondrial permeability pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophysical Journal, 76, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Pirart, J. (1977). Diabetes mellitus and its degenerative complications: A prospective study of 4,400 patients observed between 1947 and 1973. Diabetes & Metabolism, 3, 245–255.

    CAS  Google Scholar 

  • Precht, T. A., Phelps, R. A., & Linseman, D. A., et al. (2005). The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death and Differentiation, 12, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Rapin, J. R., Lamproglou, I., Jacques, V., & Leponcin, M. (1988). Effects of metformin on metabolic indices of cerebral and peripheral ischemia. Diabetes & Metabolism, 14(Suppl 4bis), 587–590.

    Google Scholar 

  • Robertson, J. D., Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2000). Distinct pathways for stimulation of cytochrome c release by etoposide. Journal of Biological Chemistry, 275, 32438–32443.

    Article  PubMed  CAS  Google Scholar 

  • Schinzel, A. C., Takeuchi, O., & Huang, Z., et al. (2005). Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 102, 12005–12010.

    Article  PubMed  CAS  Google Scholar 

  • Wei, M. C., Zong, W. X., & Cheng, E. H., et al. (2001). Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science, 292, 727–730.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J., & Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–809.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Myers, R., & Li, Y., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation, 108, 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  • Zou, M. H., Kirkpatrick, S. S., & Davis, B. J., et al. (2004). Activation of the AMP-activated protein kinase by the antidiabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. Journal of Biological Chemistry, 279, 43940–43951.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Drs. Juan P. Bolanos and Nicolas Wiernsperger for a stimulating discussion and to Mrs. MC Alguero Martín for her helpful technical assistance in flow cytometry. This work was partially supported by the JCyL (Grant SA062/03; Spain), INSERM, and Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Leverve.

Additional information

El-Mir and Detaille have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Mir, MY., Detaille, D., R-Villanueva, G. et al. Neuroprotective Role of Antidiabetic Drug Metformin Against Apoptotic Cell Death in Primary Cortical Neurons. J Mol Neurosci 34, 77–87 (2008). https://doi.org/10.1007/s12031-007-9002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9002-1

Keywords

Navigation