Skip to main content

Advertisement

Log in

Role of PACAP in Ischemic Neural Death

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that was first isolated from an ovine hypothalamus in 1989. Since its discovery, more than 2,000 papers have reported on the tissue and cellular distribution and functional significance of PACAP. A number of papers have reported that PACAP but not the vasoactive intestinal peptide suppressed neuronal cell death or decreased infarct volume after global and focal ischemia in rodents, even if PACAP was administered several hours after ischemia induction. In addition, recent studies using PACAP gene-deficient mice demonstrated that endogenous PACAP also contributes greatly to neuroprotection similarly to exogenously administered PACAP. The studies suggest that neuroprotection by PACAP might extend the therapeutic time window for treatment of ischemia-related conditions, such as stroke. This review summarizes the effects of PACAP on ischemic neuronal cell death, and the mechanism clarified in vivo ischemic studies. In addition, the prospective mechanism of PACAP on ischemic neuroprotection from in vitro neuronal and neuronal-like cell cultures with injured stress model is reviewed. Finally, the development of PACAP and/or receptor agonists for human therapy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abad, C., Gomariz, R. P., & Waschek, J. A. (2006). Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: Focus on VIP and PACAP. Current Topics in Medicinal Chemistry, 6, 151–163.

    PubMed  CAS  Google Scholar 

  • Arimura, A. (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Japanese Journal of Physiology, 48, 301–331.

    PubMed  CAS  Google Scholar 

  • Arimura, A. (2007). PACAP: The road to discovery. Peptides, 28, 1617–1619.

    PubMed  CAS  Google Scholar 

  • Arimura, A., & Shioda, S. (1995). Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: Neuroendocrine and endocrine interaction. Frontiers in Neuroendocrinology, 16, 53–88.

    PubMed  CAS  Google Scholar 

  • Arimura, A., Li, M., & Batuman, V. (2006). Potential protective action of pituitary adenylate cyclase-activating polypeptide (PACAP38) on in vitro and in vivo models of myeloma kidney injury. Blood, 107, 661–668.

    PubMed  CAS  Google Scholar 

  • Armstrong, B. D., Abad, C., Chhith, S., et al. (2008). Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience, 151, 63–73.

    PubMed  CAS  Google Scholar 

  • Atlasz, T., Babai, N., Kiss, P., et al. (2007). Pituitary adenylate cyclase activating polypeptide is protective in bilateral carotid occlusion-induced retinal lesion in rats. General and Comparative Endocrinology, 153, 108–114.

    PubMed  CAS  Google Scholar 

  • Aubert, N., Falluel-Morel, A., Vaudry, D., et al. (2006). PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: Involvement of c-Fos in PACAP-induced Bcl-2 expression. Journal of Neurochemistry, 99, 1237–1250.

    PubMed  CAS  Google Scholar 

  • Bahr, M. (2000). Live or let die—Retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends in Neurosciences, 23, 483–490.

    PubMed  CAS  Google Scholar 

  • Banks, W. A., Uchida, D., Arimura, A., Somogyvari-Vigh, A., & Shioda, S. (1996). Transport of pituitary adenylate cyclase-activating polypeptide across the blood–brain barrier and the prevention of ischemia-induced death of hippocampal neurons. Annals of the New York Academy of Sciences, 805, 270–277.

    PubMed  CAS  Google Scholar 

  • Barone, F. C., & Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: New opportunities for novel therapeutics. Journal of Cerebral Blood Flow and Metabolism, 19, 819–834.

    PubMed  CAS  Google Scholar 

  • Bhave, S. V., & Hoffman, P. L. (2004). Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: Modulation by ethanol. Journal of Neurochemistry, 88, 359–369.

    PubMed  CAS  Google Scholar 

  • Birk, S., Sitarz, J. T., Petersen, K. A., et al. (2007). The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regulatory Peptide, 140, 185–191.

    CAS  Google Scholar 

  • Braas, K. M., Schutz, K. C., Bond, J. P., Vizzard, M. A., Girard, B. M., & May, V. (2007). Microarray analyses of pituitary adenylate cyclase activating polypeptide (PACAP)-regulated gene targets in sympathetic neurons. Peptides, 28, 1856–1870.

    PubMed  CAS  Google Scholar 

  • Brenneman, D. E., Glazner, G., Hill, J. M., Hauser, J., Davidson, A., & Gozes, I. (1998). VIP neurotrophism in the central nervous system: Multiple effectors and identification of a femtomolar-acting neuroprotective peptide. Annals of the New York Academy of Sciences, 865, 207–212.

    PubMed  CAS  Google Scholar 

  • Cauvin, A., Robberecht, P., De, N. P., et al. (1991). Properties and distribution of receptors for pituitary adenylate cyclase activating peptide (PACAP) in rat brain and spinal cord. Regulatory Peptide, 35, 161–173.

    CAS  Google Scholar 

  • Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood Flow and Metabolism, 21, 2–14.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Samal, B., Hamelink, C. R., et al. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regulatory Peptide, 137, 4–19.

    CAS  Google Scholar 

  • Choi, D. W. (1988a). Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends in Neurosciences, 11, 465–469.

    PubMed  CAS  Google Scholar 

  • Choi, D. W. (1988b). Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623–634.

    PubMed  CAS  Google Scholar 

  • Colwell, C. S., Michel, S., Itri, J., et al. (2004). Selective deficits in the circadian light response in mice lacking PACAP. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287, R1194–1201.

    PubMed  CAS  Google Scholar 

  • Delcourt, N., Thouvenot, E., Chanrion, B., et al. (2007). PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO Journal, 26, 1542–1551.

    PubMed  CAS  Google Scholar 

  • Delgado, M. (2002a). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit CBP-NF-kappaB interaction in activated microglia. Biochemical and Biophysical Research Communications, 297, 1181–1185.

    PubMed  CAS  Google Scholar 

  • Delgado, M. (2002b). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochemical and Biophysical Research Communications, 293, 771–776.

    PubMed  CAS  Google Scholar 

  • Delgado, M., Abad, C., Martinez, C., et al. (2003a). PACAP in immunity and inflammation. Annals of the New York Academy of Sciences, 992, 141–157.

    PubMed  CAS  Google Scholar 

  • Delgado, M., & Ganea, D. (2001). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit expression of Fas ligand in activated T lymphocytes by regulating c-Myc, NF-kappa B, NF-AT, and early growth factors 2/3. Journal of Immunology, 166, 1028–1040.

    CAS  Google Scholar 

  • Delgado, M., Leceta, J., & Ganea, D. (2002). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide promote in vivo generation of memory Th2 cells. FASEB Journal, 16, 1844–1846.

    PubMed  CAS  Google Scholar 

  • Delgado, M., Leceta, J., & Ganea, D. (2003b). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. Journal of Leukocyte Biology, 73, 155–164.

    PubMed  CAS  Google Scholar 

  • Delgado, M., Martinez, C., Pozo, D., et al. (1999). Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. Journal of Immunology, 162, 1200–1205.

    CAS  Google Scholar 

  • Dohi, K., Mizushima, H., Nakajo, S., et al. (2002). Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regulatory Peptide, 109, 83–88.

    CAS  Google Scholar 

  • Emerich, D. F. (2000). Clinical trials with neuroprotective drugs in acute ischaemic stroke: Are we doing the right thing? Trends in Neurosciences, 23, 245–246.

    PubMed  CAS  Google Scholar 

  • Falluel-Morel, A., Aubert, N., Vaudry, D., et al. (2004). Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. Journal of Neurochemistry, 91, 1231–1243.

    PubMed  CAS  Google Scholar 

  • Frechilla, D., Garcia-Osta, A., Palacios, S., Cenarruzabeitia, E., & Del, R. J. (2001). BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport, 12, 919–923.

    PubMed  CAS  Google Scholar 

  • Ganea, D., & Delgado, M. (2002). Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Critical Reviews in Oral Biology and Medicine, 13, 229–237.

    PubMed  Google Scholar 

  • Gasz, B., Racz, B., Roth, E., et al. (2006). Pituitary adenylate cyclase activating polypeptide protects cardiomyocytes against oxidative stress-induced apoptosis. Peptides, 27, 87–94.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Rey, E., Varela, N., Chorny, A., & Delgado, M. (2007). Therapeutical approaches of vasoactive intestinal peptide as a pleiotropic immunomodulator. Current Pharmaceutical Design, 13, 1113–1139.

    PubMed  CAS  Google Scholar 

  • Gottschall, P. E., Tatsuno, I., & Arimura, A. (1991). Hypothalamic binding sites for pituitary adenylate cyclase activating polypeptide: Characterization and molecular identification. FASEB Journal, 5, 194–199.

    PubMed  CAS  Google Scholar 

  • Gottschall, P. E., Tatsuno, I., & Arimura, A. (1994). Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: Synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase activating polypeptide (PACAP). Brain Research, 637, 197–203.

    PubMed  CAS  Google Scholar 

  • Gray, S. L., Cummings, K. J., Jirik, F. R., & Sherwood, N. M. (2001). Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Molecular Endocrinology, 15, 1739–1747.

    PubMed  CAS  Google Scholar 

  • Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.

    PubMed  CAS  Google Scholar 

  • Hamelink, C., Tjurmina, O., Damadzic, R., et al. (2002). Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99, 461–466.

    PubMed  CAS  Google Scholar 

  • Harmar, A. J., Arimura, A., Gozes, I., et al. (1998). International union of pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacological Reviews, 50, 265–270.

    PubMed  CAS  Google Scholar 

  • Hashimoto, H., Shintani, N., Tanaka, K., et al. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proceedings of the National Academy of Sciences of the United States of America, 98, 13355–13360.

    PubMed  CAS  Google Scholar 

  • Hashimoto, H., Shintani, N., & Baba, A. (2006). New insights into the central PACAPergic system from the phenotypes in P. Annals of the New York Academy of Sciences, 1070, 75–89.

    PubMed  CAS  Google Scholar 

  • Hattori, T., Baba, K., Matsuzaki, S., et al. (2007). A novel DISC1-interacting partner DISC1-binding Zinc-finger protein: Implication in the modulation of DISC1-dependent neurite outgrowth. Molecular Psychiatry, 12, 398–407.

    PubMed  CAS  Google Scholar 

  • Heiss, W. D., & Graf, R. (1994). The ischemic penumbra. Current Opinion in Neurology, 7, 11–19.

    PubMed  CAS  Google Scholar 

  • Iadecola, C., & Alexander, M. (2001). Cerebral ischemia and inflammation. Current Opinion in Neurology, 14, 89–94.

    PubMed  CAS  Google Scholar 

  • Jamen, F., Bouschet, T., Laden, J. C., Bockaert, J., & Brabet, P. (2002). Up-regulation of the PACAP type-1 receptor (PAC1) promoter by neurotrophins in rat PC12 cells and mouse cerebellar granule cells via the Ras/mitogen-activated protein kinase cascade. Journal of Neurochemistry, 82, 1199–1207.

    PubMed  CAS  Google Scholar 

  • Jeanneteau, F., & Chao, M. V. (2006). Promoting neurotrophic effects by GPCR ligands. Novartis Foundation Symposium, 276, 181–189.

    PubMed  CAS  Google Scholar 

  • Jongsma, H., Pettersson, L. M., Zhang, Y., et al. (2001). Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport, 12, 2215–2219.

    PubMed  CAS  Google Scholar 

  • Kirino, T. (2000). Delayed neuronal death. Neuropathology, 20, S95–S97.

    PubMed  Google Scholar 

  • Lam, H. C., Takahashi, K., Ghatei, M. A., Kanse, S. M., Polak, J. M., & Bloom, S. R. (1990). Binding sites of a novel neuropeptide pituitary-adenylate-cyclase-activating polypeptide in the rat brain and lung. European Journal of Biochemistry, 193, 725–729.

    PubMed  CAS  Google Scholar 

  • Lee, F. S., Rajagopal, R., Kim, A. H., Chang, P. C., & Chao, M. V. (2002). Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. Journal of Biological Chemistry, 277, 9096–9102.

    PubMed  CAS  Google Scholar 

  • Li, M., David, C., Kikuta, T., Somogyvari-Vigh, A., & Arimura, A. (2005). Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38. Journal of Molecular Neuroscience, 27, 91–105.

    PubMed  Google Scholar 

  • Li, M., Maderdrut, J. L., Lertora, J. J., Arimura, A., & Batuman, V. (2008). Renoprotection by pituitary adenylate cyclase-activating polypeptide in multiple myeloma and other kidney diseases. Regulatory Peptide, 145, 24–32.

    CAS  Google Scholar 

  • Li, M., Maderdrut, J. L., Lertora, J. J., & Batuman, V. (2007). Intravenous infusion of pituitary adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: A case study. Peptides, 28, 1891–1895.

    PubMed  CAS  Google Scholar 

  • Linden, L. (1999). PACAPs-potential for bronchodilation. Pulmonary Pharmacology & Therapeutics, 12, 229–236.

    CAS  Google Scholar 

  • Loddick, S. A., Turnbull, A. V., & Rothwell, N. J. (1998). Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 176–179.

    PubMed  CAS  Google Scholar 

  • Masuo, Y., Ohtaki, T., Masuda, Y., Tsuda, M., & Fujino, M. (1992). Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): Comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Research, 575, 113–123.

    PubMed  CAS  Google Scholar 

  • Matsumoto, H., Koyama, C., Sawada, T., et al. (1993). Pituitary folliculo-stellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating peptide), showing increased adenosine 3¢,5¢-monophosphate and interleukin-6 secretion and cell proliferation. Endocrinology, 133, 2150–2155.

    PubMed  CAS  Google Scholar 

  • Minkes, R. K., McMahon, T. J., Higuera, T. R., Murphy, W. A., Coy, D. H., & Kadowitz, P. J. (1992). Analysis of systemic and pulmonary vascular responses to PACAP and VIP: Role of adrenal catecholamines. American Journal of Physiology, 263, H1659–H1669.

    PubMed  CAS  Google Scholar 

  • Miyata, A., Arimura, A., Dahl, R. R., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164, 567–574.

    PubMed  CAS  Google Scholar 

  • Murakami, K., Kondo, T., Kawase, M., et al. (1998). Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. Journal of Neuroscience, 18, 205–213.

    PubMed  CAS  Google Scholar 

  • Nagakawa, O., Junicho, A., Akashi, T., et al. (2005). Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide stimulate interleukin-6 production in prostate cancer cells and prostatic epithelial cells. Oncology Reports, 13, 1217–1221.

    PubMed  CAS  Google Scholar 

  • Nakamachi, T., Li, M., Shioda, S., & Arimura, A. (2006). Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression. Peptides, 27, 1859–1864.

    PubMed  CAS  Google Scholar 

  • Nakamachi, T., Ohtaki, H., Yofu, S., et al. (2008). Pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) co-localizes with activity-dependent neuroprotective protein (ADNP) in the mouse brains. Regulatory Peptide, 145, 88–95.

    CAS  Google Scholar 

  • Nakatani, M., Seki, T., Shinohara, Y., et al. (2006). Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Muller cells. Peptides, 27, 1871–1876.

    PubMed  CAS  Google Scholar 

  • Nicot, A., & Cicco-Bloom, E. (2001). Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proceedings of the National Academy of Sciences of the United States of America, 98, 4758–4763.

    PubMed  CAS  Google Scholar 

  • Ohtaki, H., Funahashi, H., Dohi, K., et al. (2003). Suppression of oxidative neuronal damage after transient middle cerebral artery occlusion in mice lacking interleukin-1. Neuroscience Research, 45, 313–324.

    PubMed  CAS  Google Scholar 

  • Ohtaki, H., Dohi, K., Yofu, S., et al. (2004a). Effect of pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) on tissue oxygen content–treatment in central nervous system of mice. Regulatory Peptide, 123, 61–67.

    CAS  Google Scholar 

  • Ohtaki, H., Yin, L., Nakamachi, T., et al. (2004b). Expression of tumor necrosis factor a in nerve fibers and oligodendrocytes after transient focal ischemia in mice. Neuroscience Letters, 368, 162–166.

    PubMed  CAS  Google Scholar 

  • Ohtaki, H., Nakamachi, T., Dohi, K., et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proceedings of the National Academy of Sciences of the United States of America, 103, 7488–7493.

    PubMed  CAS  Google Scholar 

  • Ohtaki, H., Takeda, T., Dohi, K., et al. (2007). Increased mitochondrial DNA oxidative damage after transient middle cerebral artery occlusion in mice. Neuroscience Research, 58, 349–355.

    PubMed  CAS  Google Scholar 

  • Pellegri, G., Magistretti, P. J., & Martin, J. L. (1998). VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones. European Journal of Neuroscience, 10, 272–280.

    PubMed  CAS  Google Scholar 

  • Racz, B., Gallyas Jr., F., & Kiss, P. (2006a). The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involve inhibition of proapoptotic signaling pathways. Regulatory Peptide, 137, 20–26.

    CAS  Google Scholar 

  • Racz, B., Tamas, A., Kiss, P., et al. (2006b). Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Annals of the New York Academy of Sciences, 1070, 507–511.

    PubMed  CAS  Google Scholar 

  • Racz, B., Gasz, B., Gallyas Jr., F., et al. (2008). PKA–Bad-14-3-3 and Akt–Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. Regulatory Peptide, 145, 105–115.

    CAS  Google Scholar 

  • Rajagopal, R., Chen, Z. Y., Lee, F. S., & Chao, M. V. (2004). Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. Journal of Neuroscience, 24, 6650–6658.

    PubMed  CAS  Google Scholar 

  • Reglodi, D., Fabian, Z., Tamas, A., et al. (2004). Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals. Regulatory Peptide, 123, 51–59.

    CAS  Google Scholar 

  • Reglodi, D., Somogyvari-Vigh, A., Vigh, S., Kozicz, T., & Arimura, A. (2000a). Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke, 31, 1411–1417.

    PubMed  CAS  Google Scholar 

  • Reglodi, D., Somogyvari-Vigh, A., Vigh, S., Maderdrut, J. L., & Arimura, A. (2000b). Neuroprotective effects of PACAP38 in a rat model of transient focal ischemia under various experimental conditions. Annals of the New York Academy of Sciences, 921, 119–128.

    PubMed  CAS  Google Scholar 

  • Rothwell, N. J., & Luheshi, G. N. (1996). Brain TNF: Damage limitation or damaged reputation? Natural Medicines, 2, 746–747.

    CAS  Google Scholar 

  • Rothwell, N. J., & Luheshi, G. N. (2000). Interleukin 1 in the brain: Biology, pathology and therapeutic target. Trends in Neurosciences, 23, 618–625.

    PubMed  CAS  Google Scholar 

  • Schwartz, M. (2003). Macrophages and microglia in central nervous system injury: Are they helpful or harmful? Journal of Cerebral Blood Flow and Metabolism, 23, 385–394.

    PubMed  Google Scholar 

  • Seki, T., Hinohara, Y., Taki, C., et al. (2006). PACAP stimulates the release of interleukin-6 in cultured rat Muller cells. Annals of the New York Academy of Sciences, 1070, 535–539.

    PubMed  CAS  Google Scholar 

  • Shintani, N., Suetake, S., Hashimoto, H., et al. (2005). Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regulatory Peptide, 126, 123–128.

    CAS  Google Scholar 

  • Shioda, S. (2000). Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in the brain. Kaibogaku Zasshi, 75, 487–507.

    PubMed  CAS  Google Scholar 

  • Shioda, S., Ohtaki, H., Nakamachi, T., et al. (2006). Pleiotropic functions of PACAP in the CNS: Neuroprotection and neurodevelopment. Annals of the New York Academy of Sciences, 1070, 550–560.

    PubMed  CAS  Google Scholar 

  • Shioda, S., Ozawa, H., Dohi, K., et al. (1998). PACAP protects hippocampal neurons against apoptosis: Involvement of JNK/SAPK signaling pathway. Annals of the New York Academy of Sciences, 865, 111–117.

    PubMed  CAS  Google Scholar 

  • Shivers, B. D., Gorcs, T. J., Gottschall, P. E., & Arimura, A. (1991). Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology, 128, 3055–3065.

    Article  PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh, A., & Reglodi, D. (2004). Pituitary adenylate cyclase activating polypeptide: A potential neuroprotective peptide. Current Pharmaceutical Design, 10, 2861–2889.

    PubMed  CAS  Google Scholar 

  • Spengler, D., Waeber, C., Pantaloni, C., et al. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365, 170–175.

    PubMed  CAS  Google Scholar 

  • Stumm, R., Kolodziej, A., Prinz, V., Endres, M., Wu, D. F., & Hollt, V. (2007). Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage. Journal of Neurochemistry, 103, 1666–1681.

    PubMed  CAS  Google Scholar 

  • Suh, J., Lu, N., Nicot, A., Tatsuno, I., & Cicco-Bloom, E. (2001). PACAP is an anti-mitogenic signal in developing cerebral cortex. Nature Neuroscience, 4, 123–124.

    PubMed  CAS  Google Scholar 

  • Tamas, A., Reglodi, D., Szanto, Z., Borsiczky, B., Nemeth, J., & Lengvari, I. (2002). Comparative neuroprotective effects of preischemic PACAP and VIP administration in permanent occlusion of the middle cerebral artery in rats. Neuroendocrinology Letters, 23, 249–254.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Shintani, N., Hashimoto, H., et al. (2006). Psychostimulant-induced attenuation of hyperactivity and prepulse inhibition deficits in Adcyap1-deficient mice. Journal of Neuroscience, 26, 5091–5097.

    PubMed  CAS  Google Scholar 

  • Tatsuno, I., Gottschall, P. E., & Arimura, A. (1991a). Specific binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) in rat cultured astrocytes: Molecular identification and interaction with vasoactive intestinal peptide (VIP). Peptides, 12, 617–621.

    PubMed  CAS  Google Scholar 

  • Tatsuno, I., Somogyvari-Vigh, A., Mizuno, K., Gottschall, P. E., Hidaka, H., & Arimura, A. (1991b). Neuropeptide regulation of interleukin-6 production from the pituitary: Stimulation by pituitary adenylate cyclase activating polypeptide and calcitonin gene-related peptide. Endocrinology, 129, 1797–1804.

    PubMed  CAS  Google Scholar 

  • Uchida, D., Arimura, A., Somogyvari-Vigh, A., Shioda, S., & Banks, W. A. (1996). Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Research, 736, 280–286.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Falluel-Morel, A., Basille, M., et al. (2003). Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. Journal of Neuroscience Research, 72, 303–316.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Fournier, A., & Vaudry, H. (1999). Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proceedings of the National Academy of Sciences of the United States of America, 96, 9415–9420.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., et al. (2000a). The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proceedings of the National Academy of Sciences of the United States of America, 97, 13390–13395.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Pamantung, T. F., Fournier, A., & Vaudry, H. (2000b). PACAP acts as a neurotrophic factor during histogenesis of the rat cerebellar cortex. Annals of the New York Academy of Sciences, 921, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000c). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Pamantung, T. F., Basille, M., et al. (2002a). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. European Journal of Neuroscience, 15, 1451–1460.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Rousselle, C., Basille, M., et al. (2002b). Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 99, 6398–6403.

    PubMed  CAS  Google Scholar 

  • Vaudry, H., & Arimura, A. (2003). Pituitary adenylate cyclase-activating polypeptide. Norwell: Kluwer.

  • Watanabe, J., Ohba, M., Ohno, F., et al. (2006). Pituitary adenylate cyclase-activating polypeptide-induced differentiation of embryonic neural stem cells into astrocytes is mediated via the beta isoform of protein kinase C. Journal of Neuroscience Research, 84, 1645–1655.

    PubMed  CAS  Google Scholar 

  • Wilson-Gerwing, T. D., & Verge, V. M. (2006). Neurotrophin-3 attenuates galanin expression in the chronic constriction injury model of neuropathic pain. Neuroscience, 141, 2075–2085.

    PubMed  CAS  Google Scholar 

  • Wu, Z. L., Ciallella, J. R., Flood, D. G., et al. (2006). Comparative analysis of cortical gene expression in mouse models of Alzheimer’s disease. Neurobiology of Aging, 27, 377–386.

    PubMed  CAS  Google Scholar 

  • Zhang, X. Y., Hayasaka, S., Chi, Z. L., Cui, H. S., & Hayasaka, Y. (2005). Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on IL-6, IL-8, and MCP-1 expression in human retinal pigment epithelial cell line. Current Eye Research, 30, 1105–1111.

    PubMed  CAS  Google Scholar 

  • Zink, M., Otto, C., Zorner, B., et al. (2004). Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor. Neuroscience Letters, 360, 106–108.

    PubMed  CAS  Google Scholar 

  • Zusev, M., & Gozes, I. (2004). Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regulatory Peptide, 123, 33–41.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Showa University Grant-in Aid for Innovative Collaborative Research Projects (H.O.) and Research on Health Sciences focusing on Drug Innovation from The Japan Health Sciences Foundation (S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Shioda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtaki, H., Nakamachi, T., Dohi, K. et al. Role of PACAP in Ischemic Neural Death. J Mol Neurosci 36, 16–25 (2008). https://doi.org/10.1007/s12031-008-9077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9077-3

Keywords

Navigation