Skip to main content

Advertisement

Log in

Effects of Ubiquilin 1 on the Unfolded Protein Response

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Previous studies have implicated the unfolded protein response (UPR) in the pathogenesis of Alzheimer’s disease (AD). We previously reported that DNA variants in the ubiquilin 1 (UBQLN1) gene increase the risk for AD. Since UBQLN1 has been shown to play a role in the UPR, we assessed the effects of overexpression and downregulation of UBQLN1 splice variants during tunicamycin-induced ER stress. In addition to previously described transcript variants, TV1 and TV2, we identified two novel transcript variants of UBQLN1 in brain: TV3 (lacking exons 2–4) and TV4 (lacking exon 4). Overexpression of TV1–3, but not TV4 significantly decreased the mRNA induction of UPR-inducible genes, C/EBP homologous protein (CHOP), BiP/GRP78, and protein disulfide isomerase (PDI) during the UPR. Stable overexpression of TV1–3, but not TV4, also significantly decreased the induction of CHOP protein and increased cell viability during the UPR. In contrast, downregulation of UBQLN1 did not affect CHOP mRNA induction, but instead increased PDI mRNA levels. These findings suggest that overexpression UBQLN1 transcript variants TV1–3, but not TV4, exert a protective effect during the UPR by attenuating CHOP induction and potentially increasing cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bedford, F. K., Kittler, J. T., Muller, E., Thomas, P., Uren, J. M., Merlo, D., et al. (2001). GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nature Neuroscience, 4, 908–916. doi:10.1038/nn0901-908.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, L., Hiltunen, M., Parkinson, M., Ingelsson, M., Lange, C., Ramasamy, K., et al. (2005). Family-based association between Alzheimer’s disease and variants in UBQLN1. The New England Journal of Medicine, 352, 884–894. doi:10.1056/NEJMoa042765.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Fan, Z., Wang, X., Ma, C., Bower, K. A., Shi, X., et al. (2007). Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. Journal of Neuroscience Research, 85, 1674–1684. doi:10.1002/jnr.21292.

    Article  CAS  PubMed  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923. doi:10.1126/science.8346443.

    Article  CAS  PubMed  Google Scholar 

  • Dorner, A. J., Wasley, L. C., Raney, P., Haugejorden, S., Green, M., & Kaufman, R. J. (1990). The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. The Journal of Biological Chemistry, 265, 22029–22034.

    CAS  PubMed  Google Scholar 

  • Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T., & Kobayashi, H. (1999). Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. The EMBO Journal, 18, 5009–5018. doi:10.1093/emboj/18.18.5009.

    Article  CAS  PubMed  Google Scholar 

  • Gao, L., Tu, H., Shi, S. T., Lee, K. J., Asanaka, M., Hwang, S. B., et al. (2003). Interaction with a ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent RNA polymerase. Journal of Virology, 77, 4149–4159. doi:10.1128/JVI.77.7.4149-4159.2003.

    Article  CAS  PubMed  Google Scholar 

  • Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706. doi:10.1038/349704a0.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell killing. Journal of Immunological Methods, 119, 203–210. doi:10.1016/0022-1759(89)90397-9.

    Article  CAS  PubMed  Google Scholar 

  • Heir, R., Ablasou, C., Dumontier, E., Elliott, M., Fagotto-Kaufmann, C., & Bedford, F. K. (2006). The UBL domain of PLIC-1 regulates aggresome formation. EMBO Reports, 7, 1252–1258. doi:10.1038/sj.embor.7400823.

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen, M., Lu, A., Thomas, A. V., Romano, D. M., Kim, M., Jones, P. B., et al. (2006). Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. The Journal of Biological Chemistry, 281, 32240–32253. doi:10.1074/jbc.M603106200.

    Article  CAS  PubMed  Google Scholar 

  • Ingelsson, M., Fukumoto, H., Newell, K. L., Growdon, J. H., Hedley-Whyte, E. T., Frosch, M. P., et al. (2004). Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 62, 925–931.

    CAS  PubMed  Google Scholar 

  • Iwatsubo, T. (2004). The gamma-secretase complex: machinery for intramembrane proteolysis. Current Opinion in Neurobiology, 14, 379–383. doi:10.1016/j.conb.2004.05.010.

    Article  CAS  PubMed  Google Scholar 

  • Kamboh, M. I., Minster, R. L., Feingold, E., & DeKosky, S. T. (2006). Genetic association of ubiquilin with Alzheimer’s disease and related quantitative measures. Molecular Psychiatry, 11, 273–279. doi:10.1038/sj.mp.4001775.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., et al. (1999). Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biology, 1, 479–485. doi:10.1038/70265.

    Article  CAS  PubMed  Google Scholar 

  • Ko, H. S., Uehara, T., & Nomura, Y. (2002). Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. The Journal of Cell Biology, 277, 35386–35392.

    CAS  Google Scholar 

  • Ko, H. S., Uehara, T., Tsuruma, K., & Nomura, Y. (2004). Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Letters, 566, 110–114. doi:10.1016/j.febslet.2004.04.031.

    Article  PubMed  Google Scholar 

  • Kogel, D., Schomburg, R., Schurmann, T., Reimertz, C., Konig, H. G., Poppe, M., et al. (2003). The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. Journal of Neurochemistry, 87, 248–256. doi:10.1046/j.1471-4159.2003.02000.x.

    Article  PubMed  Google Scholar 

  • Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 269, 973–977. doi:10.1126/science.7638622.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Holbrook, N. J. (2004). Elevated gadd153/chop expression and enhanced c-Jun N-terminal protein kinase activation sensitizes aged cells to ER stress. Experimental Gerontology, 39, 735–744. doi:10.1016/j.exger.2004.02.008.

    Article  CAS  PubMed  Google Scholar 

  • Mah, A. L., Perry, G., Smith, M. A., & Monteiro, M. J. (2000). Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. The Journal of Cell Biology, 151, 847–862. doi:10.1083/jcb.151.4.847.

    Article  CAS  PubMed  Google Scholar 

  • Massey, L. K., Mah, A. L., Ford, D. L., Miller, J., Liang, J., Doong, H., et al. (2004). Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. Journal of Alzheimer’s Disease, 6, 79–92.

    CAS  PubMed  Google Scholar 

  • Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63, 71–124. doi:10.1016/S0301-0082(00)00014-9.

    Article  CAS  PubMed  Google Scholar 

  • Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., et al. (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376, 775–778. doi:10.1038/376775a0.

    Article  CAS  PubMed  Google Scholar 

  • Sato, N., Urano, F., Yoon Leem, J., Kim, S. H., Li, M., Donoviel, D., et al. (2000). Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nature Cell Biology, 2, 863–870. doi:10.1038/35046500.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472.

    CAS  PubMed  Google Scholar 

  • Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760. doi:10.1038/375754a0.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, A. V., Herl, L., Spoelgen, R., Hiltunen, M., Jones, P. B., Tanzi, R. E., et al. (2006). Interaction between presenilin 1 and ubiquilin 1 as detected by fluorescence lifetime imaging microscopy and a high-throughput fluorescent plate reader. The Journal of Biological Chemistry, 281, 26400–26407. doi:10.1074/jbc.M601085200.

    Article  CAS  PubMed  Google Scholar 

  • Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517. doi:10.1038/nature04782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Extendicare Foundation, EVO grant 5772708 from Kuopio University Hospital, Finland, and the Finnish Academy (Mikko Hiltunen). We thank Petra Mäkinen for her excellent technical help.

Disclosure Statement

The authors have no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikko Hiltunen or Rudolph E. Tanzi.

Additional information

A. Lu and M. Hiltunen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, A., Hiltunen, M., Romano, D.M. et al. Effects of Ubiquilin 1 on the Unfolded Protein Response. J Mol Neurosci 38, 19–30 (2009). https://doi.org/10.1007/s12031-008-9155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9155-6

Keywords

Navigation