Skip to main content

Advertisement

Log in

FTY720 (Fingolimod) Attenuates Beta-amyloid Peptide (Aβ42)-Induced Impairment of Spatial Learning and Memory in Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Imbalanced lipid metabolism and increase in the ceramide-to-S1P ratio in the brain have been postulated to play a role in amyloidogenesis, neuroinflammatory reactions, and neuronal apoptosis in Alzheimer’s disease (AD) pathology. FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, has recently gained interest because of its CNS-directed effects. In addition to its immunomodulatory functions in multiple sclerosis, FTY720 possesses anti-inflammatory and neuroprotective roles in different cerebral ischemia models. In the present study, we examined the effects of FTY720 in a rat model of AD. Memory deficit was induced by bilateral intrahippocampus injection of beta-amyloid peptide (Aβ42) and examined through the Morris water maze test. The extent of histological injury in the hippocampus and the activation of caspase-3 were determined respectively by Nissl staining and Western blotting. Chronic daily administration of FTY720 (1 mg/kg, i.p., 14 days) significantly attenuated the Aβ42-induced learning and memory impairment and prevented the hippocampus neuronal damage as well as caspase-3 activation. These data show for the first time that FTY720 has a beneficial effect in restoring memory loss in Aβ42-induced neurotoxicity and also suggest that S1P receptors and signaling pathways may provide a potential target for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen JW, Eldadah BA, Huang X, Knoblach SM, Faden AI (2001) Multiple caspases are involved in β–amyloid–induced neuronal apoptosis. J Neurosci Res 65:45–53

    Article  PubMed  CAS  Google Scholar 

  • Arboleda G, Morales LC, Benítez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59:333–346

    Article  PubMed  CAS  Google Scholar 

  • Bandhuvula P, Tam YY, Oskouian B, Saba JD (2005) The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J Biol Chem 280:33697–33700

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar K, Lamb BT (2012) The role of Aβ and tau oligomers in the pathogenesis of Alzheimer’s disease. In: Rahimi F, Bitan G (eds) Non-fibrillar amyloidogenic protein assemblies-common cytotoxins underlying degenerative diseases. Springer, New York, pp 135–188

    Chapter  Google Scholar 

  • Brinkmann V, Billich A, Baumruker T et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  PubMed  CAS  Google Scholar 

  • Car H, Zendzian-Piotrowska M, Fiedorowicz A, Prokopiuk S, Sadowska A, Kurek K (2012) The role of ceramides in selected brain pathologies: ischemia/hypoxia, Alzheimer disease. Postepy Hig Med Dosw 66:295–303

    Article  Google Scholar 

  • Chiba K (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 108:308–319

    Article  PubMed  CAS  Google Scholar 

  • Choi JW, Gardell SE, Herr DR et al (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA 108:751–756

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Hartung HP (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075

    Article  PubMed  CAS  Google Scholar 

  • D’Amelio M, Cavallucci V, Middei S et al (2010) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14:69–76

    Article  PubMed  Google Scholar 

  • de la Monte SM (2012) Triangulated mal-signaling in Alzheimer’s disease: roles of neurotoxic ceramides, ER stress, and insulin resistance reviewed. J Alzheimer’s Dis 30:231–249

    Google Scholar 

  • Deogracias R, Klein C, Matsumoto T (2008) Expression of brain-derived neurotrophic factor is regulated by fingolimod (FTY720) in cultured neurons. Mult Scler 14:S243

    Google Scholar 

  • Dev KK, Mullershausen F, Mattes H et al (2008) Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther 117:77–93

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 114:23–27

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Farooqui T (2010) Lipid mediators in the nucleus: their potential contribution to Alzheimer’s disease. Biochim Biophys Acta 1801:906–916

    Article  PubMed  CAS  Google Scholar 

  • Filippov V, Song MA, Zhang K et al (2012) Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J Alzheimers Dis 29:537–547

    PubMed  CAS  Google Scholar 

  • Foster CA, Howard LM, Schweitzer A et al (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323:469–475

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Muñoz A, Kong J, Salh B, Steinbrecher UP (2003) Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 539:56–60

    Article  PubMed  Google Scholar 

  • Gomez-Brouchet A, Pchejetski D, Brizuela L et al (2007) Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-β peptide. Mol Pharmacol 72:341–349

    Article  PubMed  CAS  Google Scholar 

  • Hagen N, Van Veldhoven PP, Proia RL, Park H, Merrill AH Jr, van Echten-Deckert G (2009) Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. J Biol Chem 284:11346–11353

    Article  PubMed  CAS  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH (2010) Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41:368–374

    Article  PubMed  CAS  Google Scholar 

  • He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31:398–408

    Article  PubMed  CAS  Google Scholar 

  • Heneka M (2009) Beta-amyloid induced neuroinflammation: regulation by natural and pharmacological compounds. J Neurol Sci 283:273–273

    Article  Google Scholar 

  • Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485:63–69

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Pfeilschifter J (2008) New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem Pharmacol 75:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Jackson SJ, Giovannoni G, Baker D (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation 8:76

    Article  PubMed  CAS  Google Scholar 

  • Jana A, Pahan K (2004) Fibrillar amyloid beta peptides kill human primary neurons via NADPH oxidase mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem 279:51451–51459

    Article  PubMed  CAS  Google Scholar 

  • Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S (2007) Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27:3429–3440

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Nishizaki T, Proia R et al (2010) Regulation of synaptic strength by sphingosine 1-phosphate in the hippocampus. Neurosci 171:973–980

    Article  CAS  Google Scholar 

  • Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of β-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochem 39:10309–10318

    Article  CAS  Google Scholar 

  • Lahiri S, Futerman A (2007) The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 64:2270–2284

    Article  PubMed  CAS  Google Scholar 

  • Liesz A, Sun L, Zhou W et al (2011) FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS One 6:e21312

    Article  PubMed  CAS  Google Scholar 

  • Malaplate-Armand C, Florent-Béchard S, Youssef I et al (2006) Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 23:178–189

    Article  PubMed  CAS  Google Scholar 

  • Miron VE, Schubart A, Antel JP (2008) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274:13–17

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Kampfl A, Zhao X, Hayes R, Dash P (1999) Sphingosine-1-phosphate induces apoptosis of cultured hippocampal neurons that requires protein phosphatases and activator protein-1 complexes. Neurosci 94:405–415

    Article  CAS  Google Scholar 

  • Moradpour F, Naghdi N, Fathollahi Y (2006) Anastrozole improved testosterone-induced impairment acquisition of spatial learning and memory in the hippocampal CA1 region in adult male rats. Behav Brain Res 175:223–232

    Article  PubMed  CAS  Google Scholar 

  • Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ (2010) Alzheimer’s disease amyloid beta-protein and synaptic function. Neuromolecular Med 12:13–26

    Article  PubMed  CAS  Google Scholar 

  • Palop JJ, Mucke L (2010) Amyloid-[beta]-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, New York

    Google Scholar 

  • Payne SG, Oskeritzian CA, Griffiths R et al (2007) The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Peters I, Igbavboa U, Schütt T et al (2009) The interaction of beta-amyloid protein with cellular membranes stimulates its own production. Biochim Biophys Acta 1788:964–972

    Article  PubMed  CAS  Google Scholar 

  • Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278:19777–19783

    Article  PubMed  CAS  Google Scholar 

  • Resende R, Ferreiro E, Pereira C, Resende de Oliveira C (2008) Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1–42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neurosci 155:725–737

    Article  CAS  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Scientific World Journal 2012:756357

    Article  PubMed  Google Scholar 

  • Sensken SC, Bode C, Gräler MH (2009) Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. J Pharmacol Expl Ther 328:963–969

    Article  CAS  Google Scholar 

  • Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851

    Article  PubMed  CAS  Google Scholar 

  • Tani M, Ito M, Igarashi Y (2007) Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19:229–237

    Article  PubMed  CAS  Google Scholar 

  • Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid [beta]-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Yemisci M, Kim HH et al (2010) Fingolimod provides long–term protection in rodent models of cerebral ischemia. Ann Neurol 69:119–129

    Article  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Neuroscience Research Center of the Shahid Beheshti University of Medical Sciences. The authors are thankful to Prof. Abbas Kebriaeezadeh and Dr. Hamid Rezaei-Far for FTY720.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Dargahi.

Additional information

Masoumeh Asle-Rousta and Zeynab Kolahdooz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asle-Rousta, M., Kolahdooz, Z., Oryan, S. et al. FTY720 (Fingolimod) Attenuates Beta-amyloid Peptide (Aβ42)-Induced Impairment of Spatial Learning and Memory in Rats. J Mol Neurosci 50, 524–532 (2013). https://doi.org/10.1007/s12031-013-9979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9979-6

Keywords

Navigation