Skip to main content
Log in

Opioid Receptor Gene Expression in Human Neuroblastoma SH-SY5Y Cells Following Tapentadol Exposure

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Recent studies showed that combination of mu opioid receptor (MOP) agonism and monoamine reuptake inhibition may improve the therapeutic effect of opioids by reducing requirement for MOP activation. Tapentadol, showing such a combined mechanism of action, exhibits delayed analgesic tolerance development compared to pure MOP agonists. Here we investigated how opioid receptors are regulated following different schedules (two ranges of concentrations for 24 and 48 h) of tapentadol exposure in vitro in SH-SY5Y cells. MOP and nociceptin/orphaninFQ (NOP) receptor gene expressions were quantified using qReal-Time PCR. Moreover, studies were performed in U2 cells to assess tapentadol effect on MOP internalization compared with morphine and DAMGO. Ten and 100 nM tapentadol for 48 h induced a significant increase of MOP gene expression; cells exposed to 100 μM tapentadol for 24 and 48 h showed a significant increase of MOP mRNA levels. NOP gene expression showed a significant decrease following tapentadol at all low concentrations used after 24 h and at high concentrations (45 and 60 μM) after 24 h and (60 μM) after 48 h. Differently from DAMGO, tapentadol or morphine showed no effects on MOP internalization. This study suggests that tapentadol affects MOP and NOP gene expression and MOP internalization showing a pattern distinct from classical MOP agonists. Whether these differences can explain the improved therapeutic profile of tapentadol remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atchenson R, Rowbotham DJ, Lambert DG (1993) Fentanyl inhibits the uptake of [3H]-noradrenaline in cultured neuronal cells. Br J Anaesthesia 71:540–543

    Article  Google Scholar 

  • Caputi FF, Lattanzio F, Carretta D, Mercatelli D, Candeletti S, Romualdi P (2013) Morphine and fentanyl differently affect MOP and NOP gene expression in human neuroblastoma SH-SY5Y cells. J Mol Neurosci 51:532–538

    Article  CAS  PubMed  Google Scholar 

  • Chiou LC, Liao YY, Fan PC et al (2007) Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications. Curr. Drug Targets 8:117–135

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung S, Pohl S, Zeng J, Civelli O, Reinscheid RK (2006) Endogenous orphanin FQ/nociceptin is involved in the development of morphine tolerance. J Pharmacol Exp Ther 318:262–267

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Décaillot FM, Devi LA (2006) Targeting opioid receptor heterodimers: strategies for screening and drug development. AAPS J 8:E153–E159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ide S, Minami M, Ishihara K, Uhl GR, Sora I, Ikeda K (2006) Mu opioid receptor-dependent and independent components in effects of tramadol. Neuropharmacology 51:651–658

    Article  CAS  PubMed  Google Scholar 

  • Hartrick CT, Rozek RJ (2011) Tapentadol in pain management: a μ-opioid receptor agonist and noradrenaline reuptake inhibitor. CNS Drugs 25:359–370

    Article  CAS  PubMed  Google Scholar 

  • Kalso E, Edwards JE, Moore RA, McQuay HJ (2004) Opioids in chronic noncancer pain: systematic review of efficacy and safety. Pain 112:372–380

    Article  CAS  PubMed  Google Scholar 

  • Kieffer BL, Evans CJ (2002) Opioid tolerance—in search of the holy grail. Cell 108:587–590

    Article  CAS  PubMed  Google Scholar 

  • Koch T, Hollt V (2008) Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 117:199–206

    Article  PubMed  Google Scholar 

  • Kögel B, De Vry J, Tzschentke TM, Christoph T (2011) The antinociceptive and antihyperalgesic effect of tapentadol is partially retained in OPRM1 (μ-opioid receptor) knockout mice. Neurosci Lett 491:104–107

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lyon E (2001) Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Rev Mol Diagn 1:92–101

    Article  CAS  PubMed  Google Scholar 

  • Martini L, Whistler JL (2007) The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 17:556–564

    Article  CAS  PubMed  Google Scholar 

  • Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823

    Article  CAS  PubMed  Google Scholar 

  • Mossmann T (1993) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Meth 65:55–63

    Article  Google Scholar 

  • Murphy NP, Ball SG, Vaughan PFT (1991) Potassium and carbachol-evoked release of [3H]-noradrenaline from human neuroblastoma cells, SH-SY5Y. J Neurochem 56:1810–1815

    Article  CAS  PubMed  Google Scholar 

  • Pan YX, Bolan E, Pasternak GW (2002) Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. Biochem Biophy Res Commun 297:659–663

    Article  CAS  Google Scholar 

  • Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an “atypical” opioid analgesic. J Pharmacol Exp Ther 260:275–285

    CAS  PubMed  Google Scholar 

  • Raffa RB, Buschmann H, Christoph T et al (2012) Mechanistic and functional differentiation of tapentadol and tramadol. Expert Opin Pharmacother 13:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Schröder W, De Vry J, Tzschentke TM, Jahnel U, Christoph T (2010) Differential contribution of opioid and noradrenergic mechanisms of tapentadol in rat models of nociceptive and neuropathic pain. Eur J Pain 14:814–821

    Article  PubMed  Google Scholar 

  • Schröder W, Tzschentke TM, Terlinden R et al (2011) Synergistic interaction between the two mechanisms of action of tapentadol in analgesia. J Pharmacol Exp Ther 337:312–320

    Article  PubMed Central  PubMed  Google Scholar 

  • Tzschentke TM, Christoph T, Kögel B et al (2007) (−)-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther 323:265–276

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Inoue M, Takeshima H, Iwasawa Y (2000) Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci 20:7640–7647

    CAS  PubMed  Google Scholar 

  • Wade WE, Spruill WJ (2009) Tapentadol hydrochloride: a centrally acting oral analgesic. Clin Ther 31:2804–2818

    Article  CAS  PubMed  Google Scholar 

  • Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signalling and endocytosis: implications for the biology of tolerance and addiction. Neuron 23:737–746

    Article  CAS  PubMed  Google Scholar 

  • Williams JT, Ingram SL, Henderson G et al (2013) Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 15:223–254

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Grünenthal GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Romualdi.

Additional information

Francesca Felicia Caputi and Donatella Carretta contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputi, F.F., Carretta, D., Tzschentke, T.M. et al. Opioid Receptor Gene Expression in Human Neuroblastoma SH-SY5Y Cells Following Tapentadol Exposure. J Mol Neurosci 53, 669–676 (2014). https://doi.org/10.1007/s12031-014-0235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0235-5

Keywords

Navigation