Skip to main content

Advertisement

Log in

Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae Cross-React with the 60 kDa Heat Shock Protein and Lead to Impaired Neurite Outgrowth in NTera2/D1 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Children of mothers with prenatal gonococcal infections are of increased risk to develop schizophrenic psychosis in later life. The present study hypothesizes an autoimmune mechanism for this, investigating interactions of a commercial rabbit antiserum directed to Neisseria gonorrhoeae (α-NG) with human NTera2/D1 cells, an established in vitro model for human neuronal differentiation. Immunocytochemistry demonstrated α-NG to label antigens on an intracellular organelle, which by Western blot analysis showed a molecular weight shortly below 72 kDa. An antiserum directed to Neisseria meningitidis (α-NM) reacts with an antigen shortly below 95 kDa, confirming antibody specificity of these interactions. Two-dimensional gel electrophoresis and partial Western transfer, allowed to localize an α-NG reactive protein spot which was identified by LC–Q-TOF MS/MS analysis as mitochondrial heat shock protein Hsp60. This was confirmed by Western blot analysis of α-NG immunoreactivity with a commercial Hsp60 protein sample, with which α-NM failed to interact. Finally, analysis of neurite outgrowth in retinoic acid-stimulated differentiating NTera2-D1 cells, demonstrates that α-NG but not α-NM treatment reduces neurite length. These results demonstrate that α-NG can interact with Hsp60 in vitro, whereas pathogenetic relevance of this interaction for psychotic symptomatology remains to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albert LJ, Inman RD (1999) Molecular mimicry and autoimmunity. N Engl J Med 341:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:285–293

    Article  CAS  PubMed  Google Scholar 

  • Asif AR, Oellerich M, Amstrong VW, Gross U, Reichard U (2010) Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis. Electrophoresis 31:1947–1958

    Article  CAS  PubMed  Google Scholar 

  • Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163:927–929

    Article  PubMed  Google Scholar 

  • Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161:742–744

    Article  PubMed  Google Scholar 

  • Bollag DM, Edelstein SJ (1994) Chapter 7: isoelectric focusing and two dimensional gel electrophoresis. In: Methods P, Bollag DM, Edelstein SJ (eds) Wiley-Liss. NY, New York, pp 161–180

    Google Scholar 

  • Boog G (2004) Obstetrical complications and subsequent schizophrenia in adolescent and young adult offsprings: is there a relationship? Eur J Obstet Gynecol Reprod Biol 114:130–136

    Article  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  CAS  PubMed  Google Scholar 

  • Canetta SE, Brown AS (2012) Prenatal infection, maternal immune activation, and risk for schizophrenia. Transl Neurosci 3:320–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Coyle DE, Li J, Baccei M (2011) Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS One 6(e16174):1–12

    Google Scholar 

  • Dahm L, Klugmann F, Gonzalez-Algaba A, Reuss B (2010) Tamoxifen and raloxifene modulate gap junction coupling during early phases of retinoic acid-dependent neuronal differentiation of NTera2/D1 cells. Cell Biol Toxicol 26:579–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dale RC, Brilot F (2012) Autoimmune basal ganglia disorders. J Child Neurol 27:1470–1481

    Article  PubMed  Google Scholar 

  • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64

    Article  Google Scholar 

  • Edwards JL, Butler EK (2011) The pathobiology of Neisseria gonorrhoeae lower female genital tract infection. Front Microbiol 2(102):1–12

    Google Scholar 

  • Fatenejad S, Mamula MJ, Craft J (1993) Role of intermolecular/intrastructural B- and T-cell determinants in the diversification of autoantibodies to ribonucleoprotein particles. Proc Natl Acad Sci U S A 90:12010–12014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flegr J (2013) How and why toxoplasma makes us crazy. Trends Parasitol 29:156–163

    Article  PubMed  Google Scholar 

  • Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F, Kunz M (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res 47:1396–1402

    Article  PubMed  Google Scholar 

  • Hansen JJ, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen J, Svenstrup K, Ang D, Nielsen MN, Christensen JH, Gregersen N, Nielsen JE, Georgopoulos C, Bross P (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J Neurol 254:897–900

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Hartley RS, Margulis M, Fishman PS, Lee VM, Tang CM (1999) Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J Comp Neurol 407(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Henkel AW, Bieger SC (1994) Quantification of proteins dissolved in an electrophoresis sample buffer. Anal Biochem 223:329–331

    Article  CAS  PubMed  Google Scholar 

  • Hoffman TA, Damus AJ, Sands L (1979) Evaluation of a gonococcal serologic test. Am J Clin Pathol 71:184–189

    CAS  PubMed  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  CAS  PubMed  Google Scholar 

  • Khandaker GM, Zimbron J, Lewis G, Jones PB (2012) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 43:239–257

    Article  PubMed Central  PubMed  Google Scholar 

  • Kilidireas K, Latov N, Strauss DH, Gorig AD, Hashim GA, Gorman JM, Sadiq SA (1992) Antibodies to the human 60 kDa heat-shock protein in patients with schizophrenia. Lancet 340:569–572

    Article  CAS  PubMed  Google Scholar 

  • Kneeland RE, Fatemi SH (2013) Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 42:35–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Macario AJ (1995) Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Int J Clin Lab Res 25:59–70

    Article  CAS  PubMed  Google Scholar 

  • Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magnoni R, Palmfeldt J, Christensen JH, Sand M, Maltecca F, Corydon TJ, West M, Casari G, Bross P (2013) Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 54:12–23

    Article  CAS  PubMed  Google Scholar 

  • Marchal-Victorion S, Deleyrolle L, De Weille J, Saunier M, Dromard C, Sandillon F, Privat A, Hugnot JP (2003) The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol Cell Neurosci 24:198–213

    Article  CAS  PubMed  Google Scholar 

  • Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16:105–115

    Article  CAS  PubMed  Google Scholar 

  • Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA (2013) Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab 33:13–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller N, Ackenheil M (1995) Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology. Schizophr Res 14:223–228

    Article  PubMed  Google Scholar 

  • Murray RM, O’Callaghan E, Castle DJ, Lewis SW (1992) A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull 18:319–332

    Article  CAS  PubMed  Google Scholar 

  • Oldstone MB (1998) Molecular mimicry and immune-mediated diseases. FASEB J 12:1255–1265

    CAS  PubMed  Google Scholar 

  • Ozawa Y, Kasuga A, Nomaguchi H, Maruyama T, Kasatani T, Shimada A, Takei I, Miyazaki J, Saruta T (1996) Detection of autoantibodies to the pancreatic islet heat shock protein 60 in insulin-dependent diabetes mellitus. J Autoimmun 9:517–524

    Article  CAS  PubMed  Google Scholar 

  • Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118:1587–1594

    Article  CAS  PubMed  Google Scholar 

  • Pleasure SJ, Lee VM (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res 35:585–602

    Article  CAS  PubMed  Google Scholar 

  • Podrygajlo G, Tegenge MA, Gierse A, Paquet-Durand F, Tan S, Bicker G, Stern M (2009) Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture. Cell Tissue Res 336:439–452

    Article  CAS  PubMed  Google Scholar 

  • Podrygajlo G, Song Y, Schlesinger F, Krampfl K, Bicker G (2010) Synaptic currents and transmitter responses in human NT2 neurons differentiated in aggregate culture. Neurosci Lett 468:207–210

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Farez MF, Izquierdo G, Lucas M, Cohen IR, Weiner HL (2012) Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 78:532–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remington JS, Klein JO, Wilson GB, Baker CJ (2006) Infectious diseases of the fetus and newborn infant. Elsevier, Philadelphia

    Google Scholar 

  • Reuss B (2013) Antibodies directed to Neisseria gonorrhoeae impair nerve growth factor-dependent neurite outgrowth in rat PC12 cells. J Mol Neurosci. doi:10.1007/s12031-013-0156-8

    PubMed  Google Scholar 

  • Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, Sullivan PF et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45:1150–1159

    Article  CAS  PubMed  Google Scholar 

  • Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller FJ, Klein E, Aberdam D, Ben-Shachar D (2013) Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 69:980–988

    Article  CAS  PubMed  Google Scholar 

  • Schwarz MJ, Riedel M, Gruber R, Müller N, Ackenheil M (1998) Autoantibodies against 60-kDa heat shock protein in schizophrenia. Eur Arch Psychiatry Clin Neurosci 248:282–288

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818

    Article  CAS  PubMed  Google Scholar 

  • Selten JP, van der Ven E, Rutten BP, Cantor-Graae E (2013) The social defeat hypothesis of schizophrenia: an update. Schizophr Bull 39:1180–1186

    Article  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222:16–27

    Article  CAS  PubMed  Google Scholar 

  • Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA (2009) Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull 35:631–637

    Article  PubMed Central  PubMed  Google Scholar 

  • Sperner-Unterweger B (2005) Immunological aetiology of major psychiatric disorders: evidence and therapeutic implications. Drugs 65:1493–1520

    Article  CAS  PubMed  Google Scholar 

  • Tan EM (1991) Autoantibodies in pathology and cell biology. Cell 67:841–842

    Article  CAS  PubMed  Google Scholar 

  • Tan EM (1997) Autoantibodies and autoimmunity: a three-decade perspective. A tribute to Henry G. Kunkel. Ann N Y Acad Sci 815:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110:1–23

    Article  PubMed  Google Scholar 

  • van Eden W (1991) Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev 121:5–28

    Article  PubMed  Google Scholar 

  • Vasic N, Connemann BJ, Wolf RC, Tumani H, Brettschneider J (2012) Cerebrospinal fluid biomarker candidates of schizophrenia: where do we stand? Eur Arch Psychiatry Clin Neurosci 262:375–391

    Google Scholar 

  • Wax MB, Tezel G, Kawase K, Kitazawa Y (2001) Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 108:296–302

    Article  CAS  PubMed  Google Scholar 

  • Yokota SI, Hirata D, Minota S, Higashiyama T, Kurimoto M, Yanagi H, Yura T, Kubota H (2000) Autoantibodies against chaperonin CCT in human sera with rheumatic autoimmune diseases: comparison with antibodies against other Hsp60 family proteins. Cell Stress Chaperones 5:337–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Saatman KE, Royo NC, Soltesz KM, Millard M, Schouten JW, Motta M, Hoover RC, McMillan A, Watson DJ, Lee VM, Trojanowski JQ, McIntosh TK (2005) Delayed transplantation of human neurons following brain injury in rats: a long-term graft survival and behavior study. J Neurotrauma 22:1456–1474

    Article  PubMed  Google Scholar 

  • Zhu J, Quyyumi AA, Rott D, Csako G, Wu H, Halcox J, Epstein SE (2001) Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: evidence for an autoimmune component of atherogenesis. Circulation 103:1071–1075

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Medical Faculty of the University of Göttingen (UMG) for persistent and reliable support of our work.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Reuss.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuss, B., Asif, A.R. Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae Cross-React with the 60 kDa Heat Shock Protein and Lead to Impaired Neurite Outgrowth in NTera2/D1 Cells. J Mol Neurosci 54, 125–136 (2014). https://doi.org/10.1007/s12031-014-0258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0258-y

Keywords

Navigation