Skip to main content
Log in

Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

There is no curative treatment for most neuromuscular disorders. Exercise, as a treatment for these diseases, has therefore received growing attention. When executed properly, exercise can maintain and improve health and reduce the risk of cardiovascular disease, obesity, and diabetes. In persons with muscle wasting due to neuromuscular conditions, however, a common belief has been that physical activity could accelerate degeneration of the diseased muscle and a careful approach to training has therefore been suggested. In this review, we describe the current knowledge about physical training in patients with neuromuscular diseases associated with weakness and wasting. We review studies that have investigated different types of exercise in both myopathies and motor neuron diseases, with particular emphasis on training of persons affected by spinobulbar muscular atrophy (SBMA). Finally, we provide suggestions for future investigations of training in this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramsom A, Rogoff J (1953) An approach to rehabilitation of children with muscular dystrophy. Muscular Dystrophy Association of America, Inc., New York, pp 123–124

    Google Scholar 

  • Andersen G, Ørngreen MC, Preisler N et al (2015a) Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise: a placebo-controlled crossover study. Am J Physiol Regul Integr Comp Physiol 308:R123–R130. doi:10.1152/ajpregu.00321.2014

    Article  CAS  PubMed  Google Scholar 

  • Andersen, G., Prahm, K.P., Dahlqvist, J.R., Citirak, G., Vissing, J., 2015b. Aerobic training and postexercise protein in facioscapulohumeral muscular dystrophy: RCT study. Neurology. doi:10.1212/WNL.0000000000001808

  • Bello-Haas VD, Florence JM, Kloos AD et al (2007) A randomized controlled trial of resistance exercise in individuals with ALS. Neurology 68:2003–2007. doi:10.1212/01.wnl.0000264418.92308.a4

    Article  PubMed  Google Scholar 

  • Berthelsen MP, Husu E, Christensen SB, Prahm KP, Vissing J, Jensen BR (2014) Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy. Neuromuscul Disord NMD 24:492–498. doi:10.1016/j.nmd.2014.03.001

    Article  PubMed  Google Scholar 

  • Carter GT, Abresch RT, Fowler WM (2002) Adaptations to exercise training and contraction-induced muscle injury in animal models of muscular dystrophy. Am J Phys Med Rehabil Assoc Acad Physiatr 81:S151–S161. doi:10.1097/01.PHM.0000029776.62399.B7

    Article  Google Scholar 

  • Cortes CJ, Ling SC, Guo LT, Hung G, Tsunemi T, Ly L, Tokunaga S, Lopez E, Sopher BL, Bennett CF, Shelton GD, Cleveland DW, La Spada AR (2014) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82(2):295–307. doi:10.1016/j.neuron.2014.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlqvist JR, Vissing CR, Thomsen C, Vissing J (2014) Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy. Neurology 83:1178–1183. doi:10.1212/WNL.0000000000000828

    Article  PubMed  Google Scholar 

  • Drory VE, Goltsman E, Reznik JG, Mosek A, Korczyn AD (2001) The value of muscle exercise in patients with amyotrophic lateral sclerosis. J Neurol Sci 191:133–137

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Stegall L, McCleave E, Ding Z et al (2011) Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J Nutr Metab 2011:623182. doi:10.1155/2011/623182

    Article  PubMed  PubMed Central  Google Scholar 

  • Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, Gandrakota R (2008) Effect of intensity of aerobic training on VO2max. Med Sci Sports Exerc 40:1336–1343. doi:10.1249/MSS.0b013e31816c4839

    Article  PubMed  Google Scholar 

  • Gotkine M, Friedlander Y, Hochner H (2014) Triathletes are over-represented in a population of patients with ALS. Amyotroph Lateral Scler Front Degener 15:534–536. doi:10.3109/21678421.2014.932383

    Article  Google Scholar 

  • Harris-Love MO, Fernandez-Rhodes L, Joe G et al (2014) Assessing function and endurance in adults with spinal and bulbar muscular atrophy: validity of the adult myopathy assessment tool. Rehabil Res Pract 2014:873872. doi:10.1155/2014/873872

    PubMed  PubMed Central  Google Scholar 

  • Heje, K., Andersen, G., Buch, A.E., Vissing, J., 2015. High intensity training in patients with spinal and bulbar muscular atrophy. Neuromuscul Disord. In press (abstract).

  • Jansen M, van Alfen N, Geurts ACH, de Groot IJM (2013) Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial “no use is disuse”. Neurorehabil Neural Repair 27:816–827. doi:10.1177/1545968313496326

    Article  PubMed  Google Scholar 

  • Jensen J, Oftebro H, Breigan B et al (1991) Comparison of changes in testosterone concentrations after strength and endurance exercise in well trained men. Eur J Appl Physiol 63:467–471

    Article  CAS  Google Scholar 

  • Johnson EW, Braddom R (1971) Over-work weakness in facioscapulohuumeral muscular dystrophy. Arch Phys Med Rehabil 52:333–336

    CAS  PubMed  Google Scholar 

  • Jones DA, Newham DJ, Round JM, Tolfree SE (1986) Experimental human muscle damage: morphological changes in relation to other indices of damage. J Physiol 375:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerksick CM, Rasmussen CJ, Lancaster SL et al (2006) The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res Natl Strength Cond Assoc 20:643–653. doi:10.1519/R-17695.1

    Google Scholar 

  • Madsen, K.L., Hansen, R.S., Preisler, N., Thøgersen, F., Berthelsen, M.P., Vissing, J., 2014. Training improves oxidative capacity, but not function, in spinal muscular atrophy type III. Muscle Nerve. doi:10.1002/mus.24527

  • Oki K, Wiseman RW, Breedlove SM, Jordan CL (2013) Androgen receptors in muscle fibers induce rapid loss of force but not mass: implications for spinal bulbar muscular atrophy. Muscle Nerve 47:823–834. doi:10.1002/mus.23813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen DB, Ørngreen MC, Vissing J (2005) Aerobic training improves exercise performance in facioscapulohumeral muscular dystrophy. Neurology 64:1064–1066. doi:10.1212/01.WNL.0000150584

    Article  PubMed  Google Scholar 

  • Ørngreen MC, Olsen DB, Vissing J (2005) Aerobic training in patients with myotonic dystrophy type 1. Ann Neurol 57:754–757. doi:10.1002/ana.20460

    Article  PubMed  Google Scholar 

  • Palazzolo I, Stack C, Kong L et al (2009) Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63:316–328. doi:10.1016/j.neuron.2009.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preisler N, Andersen G, Thøgersen F, Crone C, Jeppesen TD, Wibrand F, Vissing J (2009) Effect of aerobic training in patients with spinal and bulbar muscular atrophy (Kennedy disease). Neurology 72:317–323. doi:10.1212/01.wnl.0000341274.61236.02

    Article  CAS  PubMed  Google Scholar 

  • Sanjak M, Bravver E, Bockenek WL, Norton HJ, Brooks BR (2010) Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study. Arch Phys Med Rehabil 91:1920–1929. doi:10.1016/j.apmr.2010.08.009

    Article  PubMed  Google Scholar 

  • Sharma KR, Miller RG (1996) Electrical and mechanical properties of skeletal muscle underlying increased fatigue in patients with amyotrophic lateral sclerosis. Muscle Nerve 19:1391–1400. doi:10.1002/(SICI)1097-4598(199611)19:11<1391::AID-MUS3>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  • Shrader JA, Kats I, Kokkinis A et al (2015) A randomized controlled trial of exercise in spinal and bulbar muscular atrophy. Ann Clin Transl Neurol 2:739–747. doi:10.1002/acn3.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorarù G, D’Ascenzo C, Polo A, Palmieri A, Baggio L, Vergani L, Gellera C, Moretto G, Pegoraro E, Angelini C (2008) Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J Neurol Sci 264(1-2):100–105, Epub 2007 Sep 12

    Article  PubMed  Google Scholar 

  • Sveen M-L, Jeppesen TD, Hauerslev S, Krag TO, Vissing J (2007) Endurance training: an effective and safe treatment for patients with LGMD2I. Neurology 68:59–61. doi:10.1212/01.wnl.0000250358.32199.24

    Article  PubMed  Google Scholar 

  • Sveen ML, Jeppesen TD, Hauerslev S, Køber L, Krag TO, Vissing J (2008) Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain J Neurol 131:2824–2831. doi:10.1093/brain/awn189

    Article  Google Scholar 

  • Sveen M-L, Andersen SP, Ingelsrud LH et al (2013) Resistance training in patients with limb-girdle and Becker muscular dystrophies. Muscle Nerve 47:163–169. doi:10.1002/mus.23491

    Article  PubMed  Google Scholar 

  • Wright NC, Kilmer DD, McCrory MA, Aitkens SG, Holcomb BJ, Bernauer EM (1996) Aerobic walking in slowly progressive neuromuscular disease: effect of a 12-week program. Arch Phys Med Rehabil 77:64–69

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67. doi:10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP (2006) Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 116:2663–2672. doi:10.1172/JCI28773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

Dr. Vissing has received research support and honoraria from Genzyme Corporation. He is a member of the Genzyme Pompe Disease Global Advisory Board. Dr. Dahlqvist declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Rebecka Dahlqvist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlqvist, J.R., Vissing, J. Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders. J Mol Neurosci 58, 388–393 (2016). https://doi.org/10.1007/s12031-015-0686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0686-3

Keywords

Navigation