Skip to main content

Advertisement

Log in

The Role and Metabolism of Sulfatide in the Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

3-O-sulfogalactosylceramide or sulfatide is a major component of the myelin sheath in the central and peripheral nervous system. The examination of mice deficient in the sulfatide-synthesizing enzyme, cerebroside sulfotransferase, provided new insight into the role of sulfatide in the differentiation of myelinating cells, formation of the paranodal junction, and myelin maintenance. Although in general regarded as a marker for oligodendrocytes and Schwann cells, sulfatide is also present in astrocytes and neurons. The relatively low amount of sulfatide in neurons can dramatically increase in the absence of the sulfatide-degrading enzyme, arylsulfatase A, as in metachromatic leukodystrophy. Recent advance in the understanding of this disease comes from studies on new transgenic mouse models. Significant changes in sulfatide levels have also been observed more recently in Alzheimer’s disease and other diseases, suggesting that sulfatide might be involved in the pathogenesis of these diseases as well. This review summarizes recent studies on the physiological and pathophysiological role of sulfatide using transgenic mice deficient in its synthesis or degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Degroote S, Wolthoorn J, van Meer G (2004) The cell biology of glycosphingolipids. Semin Cell Dev Biol 15:375–387

    PubMed  CAS  Google Scholar 

  2. Lahiri S, Futerman AH (2007) The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 64:2270–2284

    PubMed  CAS  Google Scholar 

  3. Hoetzl S, Sprong H, van Meer G (2007) The way we view cellular (glyco)sphingolipids. J Neurochem 103(Suppl 1):3–13

    PubMed  CAS  Google Scholar 

  4. Thudichum JLW (1884) A treatise on the chemical constitution of the brain. Ballière, Tindall, and Cox, London

    Google Scholar 

  5. Vos JP, Lopes-Cardozo M, Gadella BM (1994) Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211:125–149

    PubMed  CAS  Google Scholar 

  6. Ishizuka I (1997) Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36:245–319

    PubMed  CAS  Google Scholar 

  7. Senn C, Kutsche M, Saghatelyan A, Bösl MR, Löhler J, Bartsch U, Morellini F, Schachner M (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci 20:712–729

    PubMed  CAS  Google Scholar 

  8. Gurevicius K, Gureviciene I, Sivukhina E, Irintchev A, Schachner M, Tanila H (2007) Increased hippocampal and cortical beta oscillations in mice deficient for the HNK-1 sulfotransferase. Mol Cell Neurosci 34:189–198

    PubMed  CAS  Google Scholar 

  9. Norton WT, Cammer W (1984) Isolation and characterization of myelin. In: Morell P (ed) Myelin. Plenum, New York, NY, pp 147–195

    Google Scholar 

  10. Taylor CM, Marta CB, Bansal R, Pfeiffer SE (2004) The transport, assembly, and function of myelin lipids. In: Lazzarini RA (ed) Myelin biology and disorders. vol. 1. Academic, New York, NY, pp 57–88

    Google Scholar 

  11. Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278:43452–43459

    PubMed  CAS  Google Scholar 

  12. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390:263–271

    PubMed  CAS  Google Scholar 

  13. Becker I, Wang-Eckhardt L, Yaghootfam A, Gieselmann V, Eckhardt M (2008) Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem Cell Biol 129:233–241

    PubMed  CAS  Google Scholar 

  14. Alderson NL, Maldonado EN, Kern MJ, Bhat NR, Hama H (2006) FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain. J Lipid Res 47:2772–2780

    PubMed  CAS  Google Scholar 

  15. Eckhardt M, Yaghootfam A, Fewou SN, Zöller I, Gieselmann V (2005) A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem J 388:245–254

    PubMed  CAS  Google Scholar 

  16. Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, Hama H (2004) The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem 279:48562–48568

    PubMed  CAS  Google Scholar 

  17. Morell P, Radin NS (1969) Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8:506–512

    PubMed  CAS  Google Scholar 

  18. Basu S, Schultz AM, Basu M, Roseman S (1971) Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J Biol Chem 246:4272–4279

    PubMed  CAS  Google Scholar 

  19. van der Bijl P, Strous GJ, Lopes-Cardozo M, Thomas-Oates J, van Meer G (1996) Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase. Biochem J 317:589–597

    PubMed  Google Scholar 

  20. Sprong H, Degroote S, Nilsson T, Kawakita M, Ishida N, van der Sluijs P, van Meer G (2003) Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell 14:3482–3493

    PubMed  CAS  Google Scholar 

  21. Honke K, Tsuda M, Hirahara Y, Ishii A, Makita A, Wada Y (1997) Molecular cloning and expression of cDNA encoding human 3′-phosphoadenylylsulfate:galactosylceramide 3′-sulfotransferase. J Biol Chem 272:4864–4868

    PubMed  CAS  Google Scholar 

  22. Hirahara Y, Tsuda M, Wada Y, Honke K (2000) cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase. Eur J Biochem 267:1909–1917

    PubMed  CAS  Google Scholar 

  23. Yaghootfam A, Sorkalla T, Häberlein H, Gieselmann V, Kappler J, Eckhardt M (2007) Cerebroside sulfotransferase forms homodimers in living cells. Biochemistry 46:9260–9269

    PubMed  CAS  Google Scholar 

  24. Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    PubMed  CAS  Google Scholar 

  25. Tempesta MC, Salvayre R, Levade T (1994) Functional compartments of sulphatide metabolism in cultured living cells: evidence for the involvement of a novel sulphatide-degrading pathway. Biochem J 297:479–489

    PubMed  CAS  Google Scholar 

  26. Sundaram SK, Fan JH, Lev M (1995) A neutral galactocerebroside sulfate sulfatidase from mouse brain. J Biol Chem 270:10187–10192

    PubMed  CAS  Google Scholar 

  27. Zeng Y, Cheng H, Jiang X, Han X (2008) Endosomes and lysosomes play distinct roles in sulfatide-induced neuroblastoma apoptosis: potential mechanisms contributing to abnormal sulfatide metabolism in related neuronal diseases. Biochem J 410:81–92

    PubMed  CAS  Google Scholar 

  28. Berntson Z, Hansson E, Rönnbäck L, Fredman P (1998) Intracellular sulfatide expression in a subpopulation of astrocytes in primary cultures. J Neurosci Res 52:559–568

    PubMed  CAS  Google Scholar 

  29. Pernber Z, Molander-Melin M, Berthold CH, Hansson E, Fredman P (2002) Expression of the myelin and oligodendrocyte progenitor marker sulfatide in neurons and astrocytes of adult rat brain. J Neurosci Res 69:86–93

    PubMed  CAS  Google Scholar 

  30. Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM (2003) Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content. J Biol Chem 278:8043–8051

    PubMed  CAS  Google Scholar 

  31. Isaac G, Pernber Z, Gieselmann V, Hansson E, Bergquist J, Månsson JE (2006) Sulfatide with short fatty acid dominates in astrocytes and neurons. FEBS J 273:1782–1790

    PubMed  CAS  Google Scholar 

  32. Schaeren-Wiemers N, van der Bijl P, Schwab ME (1995) The UDP-galactose:ceramide galactosyltransferase: expression pattern in oligodendrocytes and Schwann cells during myelination and substrate preference for hydroxyceramide. J Neurochem 65:2267–2278

    PubMed  CAS  Google Scholar 

  33. Eckhardt M, Khalaj Hedayati K, Pitsch J, Lüllmann-Rauch R, Beck H, Fewou SN, Gieselmann V (2007) Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 27:9009–9021

    PubMed  CAS  Google Scholar 

  34. Han X (2007) Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer’s disease: a tale of shotgun lipidomics. J Neurochem 103(Suppl 1):171–179

    PubMed  CAS  Google Scholar 

  35. Han X (2004) The role of apolipoprotein E in lipid metabolism in the central nervous system. Cell Mol Life Sci 61:1896–1906

    PubMed  CAS  Google Scholar 

  36. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917:148–161

    PubMed  CAS  Google Scholar 

  37. Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH, Hui DY, Mahley RW, Gebicke-Haerter PJ, Ignatius MJ, Shooter EM (1989) A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J Clin Invest 83:1015–1031

    PubMed  CAS  Google Scholar 

  38. Vance JE, Karten B, Hayashi H (2006) Lipid dynamics in neurons. Biochem Soc Trans 34:399–403

    PubMed  CAS  Google Scholar 

  39. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    PubMed  CAS  Google Scholar 

  40. Bansal R, Gard AL, Pfeiffer SE (1988) Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid. J Neurosci Res 21:260–267

    PubMed  CAS  Google Scholar 

  41. Bansal R, Pfeiffer SE (1989) Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc Natl Acad Sci U S A 86:6181–6185

    PubMed  CAS  Google Scholar 

  42. Bansal R, Winkler S, Bheddah S (1999) Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19:7913–7924

    PubMed  CAS  Google Scholar 

  43. Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y (2004) Sulfatide is a negative regulator of oligodendrocyte differentiation: development in sulfatide-null mice. Glia 45:269–277

    PubMed  Google Scholar 

  44. Pesheva P, Gloor S, Schachner M, Probstmeier R (1997) Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism. J Neurosci 17:4642–4651

    PubMed  CAS  Google Scholar 

  45. Roberts DD, Rao CN, Magnani JL, Spitalnik SL, Liotta LA, Ginsburg V (1985) Laminin binds specifically to sulfated glycolipids. Proc Natl Acad Sci U S A 82:1306–1310

    PubMed  CAS  Google Scholar 

  46. Li S, Liquari P, McKee KK, Harrison D, Patel R, Lee S, Yurchenco PD (2005) Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169:179–189

    PubMed  CAS  Google Scholar 

  47. Chen LM, Bailey D, Fernandez-Valle C (2000) Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20:3776–3784

    PubMed  CAS  Google Scholar 

  48. Baron W, Decker L, Colognato H, Ffrench-Constant C (2003) Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 13:151–155

    PubMed  CAS  Google Scholar 

  49. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    PubMed  CAS  Google Scholar 

  50. Bosio A, Binczek E, Stoffel W (1996) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci U S A 93:13280–13285

    PubMed  CAS  Google Scholar 

  51. Bosio A, Binczek E, Haupt WF, Stoffel W (1998) Composition and biophysical properties of myelin lipid define the neurological defects in galactocerebroside- and sulfatide-deficient mice. J Neurochem 70:308–315

    Article  PubMed  CAS  Google Scholar 

  52. Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99:4227–4232

    PubMed  CAS  Google Scholar 

  53. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53:372–381

    PubMed  CAS  Google Scholar 

  54. Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22:6507–6514

    PubMed  CAS  Google Scholar 

  55. Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, Baba H (2004) Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 46:274–283

    PubMed  Google Scholar 

  56. Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, Matsushima GK, Popko B (2005) Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol 1:1–14

    PubMed  Google Scholar 

  57. Hoshi T, Suzuki A, Hayashi S, Tohyama K, Hayashi A, Yamaguchi Y, Takeuchi K, Baba H (2007) Nodal protrusions, increased Schmidt–Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves. Glia 55:584–594

    PubMed  Google Scholar 

  58. Hayashi A, Nakashima K, Yamagishi K, Hoshi T, Suzuki A, Baba H (2007) Localization of annexin II in the paranodal regions and Schmidt–Lanterman incisures in the peripheral nervous system. Glia 55:1044–1052

    PubMed  Google Scholar 

  59. Simons M, Krämer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154

    PubMed  CAS  Google Scholar 

  60. Schafer DP, Rasband MN (2006) Glial regulation of the axonal membrane at nodes of Ranvier. Curr Opin Neurobiol 16:508–514

    PubMed  CAS  Google Scholar 

  61. Schafer DP, Bansal R, Hedstrom KL, Pfeiffer SE, Rasband MN (2004) Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J Neurosci 24:3176–3185

    PubMed  CAS  Google Scholar 

  62. Schaeren-Wiemers N, Bonnet A, Erb M, Erne B, Bartsch U, Kern F, Mantei N, Sherman D, Suter U (2004) The raft-associated protein MAL is required for maintenance of proper axon-glia interactions in the central nervous system. J Cell Biol 166:731–742

    PubMed  CAS  Google Scholar 

  63. Erne B, Sansano S, Frank M, Schaeren-Wiemers N (2002) Rafts in adult peripheral nerve myelin contain major structural myelin proteins and myelin and lymphocyte protein (MAL) and CD59 as specific markers. J Neurochem 82:550–562

    PubMed  CAS  Google Scholar 

  64. Frank M, van der Haar ME, Schaeren-Wiemers N, Schwab ME (1998) rMAL is a glycosphingolipid-associated protein of myelin and apical membranes of epithelial cells in kidney and stomach. J Neurosci 18:4901–4913

    PubMed  CAS  Google Scholar 

  65. Saravanan K, Schaeren-Wiemers N, Klein D, Sandhoff R, Schwarz A, Yaghootfam A, Gieselmann V, Franken S (2004) Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol Dis 16:396–406

    PubMed  CAS  Google Scholar 

  66. Von Figura K, Gieselmann V, Jaeken J (2001) Metachromatic leukodystrophy. In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular basis of inherited disease. McGraw Hill, New York, NY, pp 3695–372

    Google Scholar 

  67. Hess B, Saftig P, Hartmann D, Coenen R, Lüllmann-Rauch R, Goebel HH, Evers M, von Figura K, D’Hooge R, Nagels G, De Deyn P, Peters C, Gieselmann V (1996) Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci U S A 93:14821–14826

    PubMed  CAS  Google Scholar 

  68. Gieselmann V, Matzner U, Hess B, Lüllmann-Rauch R, Coenen R, Hartmann D, D’Hooge R, DeDeyn P, Nagels G (1998) Metachromatic leukodystrophy: molecular genetics and an animal model. J Inherit Metab Dis 21:564–574

    PubMed  CAS  Google Scholar 

  69. Wittke D, Hartmann D, Gieselmann V, Lüllmann-Rauch R (2004) Lysosomal sulfatide storage in the brain of arylsulfatase A-deficient mice: cellular alterations and topographic distribution. Acta Neuropathol 108:261–271

    PubMed  CAS  Google Scholar 

  70. D’Hooge R, Hartmann D, Manil J, Colin F, Gieselmann V, De Deyn PP (1999) Neuromotor alterations and cerebellar deficits in aged arylsulfatase A-deficient transgenic mice. Neurosci Lett 273:93–96

    PubMed  CAS  Google Scholar 

  71. D’Hooge R, Van Dam D, Franck F, Gieselmann V, De Deyn PP (2001) Hyperactivity, neuromotor defects, and impaired learning and memory in a mouse model for metachromatic leukodystrophy. Brain Res 907:35–43

    PubMed  CAS  Google Scholar 

  72. Stroobants S, Leroy T, Eckhardt M, Aerts J-M, Berckmans D, D’Hooge R (2008) Early signs of neurolipidosis-related behavioural alterations in a murine model of metachromatic leukodystrophy. Behav Brain Res 189:306–316

    PubMed  CAS  Google Scholar 

  73. Yaghootfam A, Gieselmann V, Eckhardt M (2005) Delay of myelin formation in arylsulphatase A-deficient mice. Eur J Neurosci 21:711–720

    PubMed  Google Scholar 

  74. Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A, Benaglia G, Marchesini S, Cestari V, Oliverio A, Bordignon C, Naldini L (2001) In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 7:310–316

    PubMed  CAS  Google Scholar 

  75. Sevin C, Benraiss A, Van Dam D, Bonnin D, Nagels G, Verot L, Laurendeau I, Vidaud M, Gieselmann V, Vanier M, De Deyn PP, Aubourg P, Cartier N (2006) Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum Mol Genet 15:53–64

    PubMed  CAS  Google Scholar 

  76. Sevin C, Verot L, Benraiss A, Van Dam D, Bonnin D, Nagels G, Fouquet F, Gieselmann V, Vanier MT, De Deyn PP, Aubourg P, Cartier N (2007) Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Ther 14:405–414

    PubMed  CAS  Google Scholar 

  77. Matzner U, Harzer K, Learish RD, Barranger JA, Gieselmann V (2000) Long-term expression and transfer of arylsulfatase A into brain of arylsulfatase A-deficient mice transplanted with bone marrow expressing the arylsulfatase A cDNA from a retroviral vector. Gene Ther 7:1250–1257

    PubMed  CAS  Google Scholar 

  78. Matzner U, Hartmann D, Lüllmann-Rauch R, Coenen R, Rothert F, Månsson JE, Fredman P, D’Hooge R, De Deyn PP, Gieselmann V (2002) Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations. Gene Ther 9:53–63

    PubMed  CAS  Google Scholar 

  79. Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, Sessa M, Fasano S, Brambilla R, Marchesini S, Bordignon C, Naldini L (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129

    PubMed  CAS  Google Scholar 

  80. Biffi A, Capotondo A, Fasano S, del Carro U, Marchesini S, Azuma H, Malaguti MC, Amadio S, Brambilla R, Grompe M, Bordignon C, Quattrini A, Naldini L (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116:3070–3082

    PubMed  CAS  Google Scholar 

  81. Matzner U, Herbst E, Khalaj Hedayati K, Lüllmann-Rauch R, Wessig C, Schröder S, Eistrup C, Möller C, Fogh J, Gieselmann V (2005) Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 14:1139–1152

    PubMed  CAS  Google Scholar 

  82. Givogri MI, Galbiati F, Fasano S, Amadio S, Perani L, Superchi D, Morana P, Del Carro U, Marchesini S, Brambilla R, Wrabetz L, Bongarzone E (2006) Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. J Neurosci 26:3109–3119

    PubMed  CAS  Google Scholar 

  83. Klein D, Schmandt T, Muth-Köhne E, Perez-Bouza A, Segschneider M, Gieselmann V, Brüstle O (2006) Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Ther 13:1686–1695

    PubMed  CAS  Google Scholar 

  84. Gieselmann V, Matzner U, Klein D, Mansson JE, D’Hooge R, De Deyn PP, Lüllmann-Rauch R, Hartmann D, Harzer K (2003) Gene therapy: prospects for glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 358:921–925

    PubMed  CAS  Google Scholar 

  85. Matzner U, Gieselmann V (2005) Gene therapy of metachromatic leukodystrophy. Expert Opin Biol Ther 5:55–65

    PubMed  CAS  Google Scholar 

  86. Sevin C, Aubourg P, Cartier N (2007) Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis 30:175–183

    PubMed  CAS  Google Scholar 

  87. Biffi A, Naldini L (2007) Novel candidate disease for gene therapy: metachromatic leukodystrophy. Expert Opin Biol Ther 7:1193–1205

    PubMed  CAS  Google Scholar 

  88. Lütjohann D, Harzer K, Gieselmann V, Eckhardt M (2006) Reduced brain cholesterol content in arylsulfatase A-deficient mice. Biochem Biophys Res Commun 344:647–650

    PubMed  Google Scholar 

  89. Harzer K, Kustermann-Kühn B (1987) Brain galactolipid content in a patient with pseudoarylsulfatase A deficiency and coincidental diffuse disseminated sclerosis, and in patients with metachromatic, adreno-, and other leukodystrophies. J Neurochem 48:62–66

    PubMed  CAS  Google Scholar 

  90. Poduslo SE, Miller K, Jang Y (1982) Biochemical studies of the late infantile form of metachromatic leukodystrophy. Acta Neuropathol 57:13–22

    PubMed  CAS  Google Scholar 

  91. Walkley SU (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444

    PubMed  CAS  Google Scholar 

  92. Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R, Wehr MC, Wieland F, Ishibashi S, Nave KA (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475

    PubMed  CAS  Google Scholar 

  93. Molander-Melin M, Pernber Z, Franken S, Gieselmann V, Månsson JE, Fredman P (2004) Accumulation of sulfatide in neuronal and glial cells of arylsulfatase A deficient mice. J Neurocytol 33:417–427

    PubMed  CAS  Google Scholar 

  94. Schaeren-Wiemers N, Valenzuela DM, Frank M, Schwab ME (1995) Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin. J Neurosci 15:5753–5764

    PubMed  CAS  Google Scholar 

  95. Saravanan K, Büssow H, Weiler N, Gieselmann V, Franken S (2007) A spontaneously immortalized Schwann cell line to study the molecular aspects of metachromatic leukodystrophy. J Neurosci Methods 161:223–233

    PubMed  CAS  Google Scholar 

  96. Sango K, Yamanaka S, Hoffmann A, Okuda Y, Grinberg A, Westphal H, McDonald MP, Crawley JN, Sandhoff K, Suzuki K, Proia RL (1995) Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11:170–176

    PubMed  CAS  Google Scholar 

  97. Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212

    PubMed  CAS  Google Scholar 

  98. Ramakrishnan H, Khalaj Hedayati K, Lüllmann-Rauch R, Wessig C, Fewou SN, Maier H, Goebel HH, Gieselmann V, Eckhardt M (2007) Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy. J Neurosci 27:9482–9490

    PubMed  CAS  Google Scholar 

  99. Fewou SN, Büssow H, Schaeren-Wiemers N, Vanier MT, Macklin WB, Gieselmann V, Eckhardt M (2005) Reversal of non-hydroxy:alpha-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose:ceramide galactosyltransferase. J Neurochem 94:469–481

    PubMed  CAS  Google Scholar 

  100. Klein D, Büssow H, Fewou SN, Gieselmann V (2005) Exocytosis of storage material in a lysosomal disorder. Biochem Biophys Res Commun 327:663–667

    PubMed  CAS  Google Scholar 

  101. Simons K, Gruenberg J (2000) Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10:459–462

    PubMed  CAS  Google Scholar 

  102. Lingwood D, Fisher LJ, Callahan JW, Ballantyne JS (2004) Sulfatide and Na+-K+-ATPase: a salinity-sensitive relationship in the gill basolateral membrane of rainbow trout. J Membr Biol 201:77–84

    PubMed  CAS  Google Scholar 

  103. Lingwood D, Harauz G, Ballantyne JS (2005) Regulation of fish gill Na(+)-K(+)-ATPase by selective sulfatide-enriched raft partitioning during seawater adaptation. J Biol Chem 280:36545–36550

    PubMed  CAS  Google Scholar 

  104. Ramu Y, Xu Y, Lu Z (2006) Enzymatic activation of voltage-gated potassium channels. Nature 442:696–699

    PubMed  CAS  Google Scholar 

  105. Chi S, Qi Z (2006) Regulatory effect of sulphatides on BKCa channels. Br J Pharmacol 149:1031–1038

    PubMed  CAS  Google Scholar 

  106. Buschard K, Blomqvist M, Månsson JE, Fredman P, Juhl K, Gromada J (2006) C16:0 sulfatide inhibits insulin secretion in rat beta-cells by reducing the sensitivity of KATP channels to ATP inhibition. Diabetes 55:2826–2834

    PubMed  CAS  Google Scholar 

  107. Miki T, Seino S (2005) Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol 38:917–925

    PubMed  CAS  Google Scholar 

  108. Soundarapandian MM, Zhong X, Peng L, Wu D, Lu Y (2007) Role of K(ATP) channels in protection against neuronal excitatory insults. J Neurochem 103:1721–1729

    PubMed  CAS  Google Scholar 

  109. Barrier L, Page G, Barc S, Piriou A, Portoukalian J (2003) Sulfatide and GM1 ganglioside modulate the high-affinity dopamine uptake in rat striatal synaptosomes: evidence for the involvement of their ionic charges. Neurochem Int 42:305–313

    PubMed  CAS  Google Scholar 

  110. Hermansson M, Käkelä R, Berghäll M, Lehesjoki AE, Somerharju P, Lahtinen U (2005) Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J Neurochem 95:609–617

    PubMed  CAS  Google Scholar 

  111. Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, Sharp J, Wheeler R, Kusumi K, Mole S, Liu W, Soares MB, Bonaldo MF, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE (1999) The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet 23:233–236

    PubMed  CAS  Google Scholar 

  112. Winter E, Ponting CP (2002) TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem Sci 27:381–383

    PubMed  CAS  Google Scholar 

  113. Cheng H, Xu J, McKeel DW Jr, Han X (2003) Specificity and potential mechanism of sulfatide deficiency in Alzheimer’s disease: an electrospray ionization mass spectrometric study. Cell Mol Biol (Noisy-le-grand) 49:809–818

    CAS  Google Scholar 

  114. Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    PubMed  CAS  Google Scholar 

  115. Han X, Fagan AM, Cheng H, Morris JC, Xiong C, Holtzman DM (2003) Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 54:115–119

    PubMed  CAS  Google Scholar 

  116. Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci 19:53–77

    PubMed  CAS  Google Scholar 

  117. Zöller I, Büssow H, Gieselmann V, Eckhardt M (2005) Oligodendrocyte specific ceramide galactosyltransferase (CGT) expression phenotypically rescues CGT deficient mice and demonstrates that CGT activity does not limit brain galactosylceramide level. Glia 52:190–198

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Eckhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhardt, M. The Role and Metabolism of Sulfatide in the Nervous System. Mol Neurobiol 37, 93–103 (2008). https://doi.org/10.1007/s12035-008-8022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8022-3

Keywords

Navigation