Skip to main content

Advertisement

Log in

Inflammatory Neurodegeneration and Mechanisms of Microglial Killing of Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammatory neurodegeneration contributes to a wide variety of brain pathologies. A number of mechanisms by which inflammatory-activated microglia and astrocytes kill neurons have been identified in culture. These include: (1) acute activation of the phagocyte NADPH oxidase (PHOX) found in microglia, (2) expression of the inducible nitric oxide synthase (iNOS) in glia, and (3) microglial phagocytosis of neurons. Activation of PHOX (by cytokines, β-amyloid, prion protein, lipopolysaccharide, ATP, or arachidonate) causes microglial proliferation and inflammatory activation; thus, PHOX is a key regulator of inflammation. However, activation of PHOX alone causes little or no death, but when combined with iNOS expression results in apparent apoptosis via peroxynitrite production. Nitric oxide (NO) from iNOS expression also strongly synergizes with hypoxia to induce neuronal death because NO inhibits cytochrome oxidase in competition with oxygen, resulting in glutamate release and excitotoxicity. Finally, microglial phagocytosis of these stressed neurons may contribute to their loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

NO:

Nitric oxide

NOS:

Nitric oxide synthase

iNOS:

Inducible NOS

PHOX:

Phagocytic NADPH oxidase

PS:

Phosphatidyserine

RONS:

Reactive oxygen and nitrogen species

References

  1. Klegeris A, McGeer EG, McGeer PL (2007) Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol 20:351–357

    Article  CAS  PubMed  Google Scholar 

  2. Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527

    Article  CAS  PubMed  Google Scholar 

  3. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240

    Article  CAS  PubMed  Google Scholar 

  4. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    Article  CAS  PubMed  Google Scholar 

  5. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  6. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    CAS  PubMed  Google Scholar 

  7. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495

    Article  CAS  PubMed  Google Scholar 

  8. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  9. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  10. Bal-Price A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80:73–80

    Article  CAS  PubMed  Google Scholar 

  11. Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflamm 2:20

    Article  CAS  Google Scholar 

  12. Mander PK, Jekabsone A, Brown GC (2006) Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol 176:1046–1052

    CAS  PubMed  Google Scholar 

  13. Jekabsone A, Mander PK, Tickler A, Sharpe M, Brown GC (2006) Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: a cell culture study. J Neuroinflamm 3:24

    Article  CAS  Google Scholar 

  14. Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77:540–551

    Article  CAS  PubMed  Google Scholar 

  15. Chan EC, Jiang F, Peshavariya HM, Dusting GJ (2009) Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther 122:97–108

    Article  CAS  PubMed  Google Scholar 

  16. Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    Article  CAS  PubMed  Google Scholar 

  17. Heneka MT, Feinstein DL (2001) Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol 114:8–18

    Article  CAS  PubMed  Google Scholar 

  18. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia, inhibiting neuronal respiration, causing glutamate release and excitoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  19. Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  CAS  PubMed  Google Scholar 

  20. McNaught K, St P, Brown GC (1998) Nitric oxide causes glutamate release from brain synaptosomes following inhibition of mitochondrial function. J Neurochem 70:1541–1546

    Article  CAS  PubMed  Google Scholar 

  21. Stewart VC, Heslegrave AJ, Brown GC, Clark JB, Heales SJ (2002) Nitric oxide-dependent damage to neuronal mitochondria involves the NMDA receptor. Eur J NeuroSci 15:458–464

    Article  CAS  PubMed  Google Scholar 

  22. Golde S, Chandran S, Brown GC, Compston A (2002) Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression. J Neurochem 82:269–282

    Article  CAS  PubMed  Google Scholar 

  23. Jekabsone A, Neher J, Borutaite V, Brown GC (2007) Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase. J Neurochem 103:346–356

    CAS  PubMed  Google Scholar 

  24. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    Article  PubMed  Google Scholar 

  25. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  CAS  PubMed  Google Scholar 

  26. Kinsner A, Boveri M, Hareng L, Traub S, Brown GC, Coecke S, Hartung T, Bal-Price A (2006) Highly purified lipoteichoic acid induced proinflammatory signalling in primary culture of rat microglia through Toll-like receptor 2: selective potentiation of nitric oxide production by muramyl dipeptide. J Neurochem 99:596–607

    Article  CAS  PubMed  Google Scholar 

  27. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA (2002) Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22:3921–3928

    CAS  PubMed  Google Scholar 

  28. Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T (2001) Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 276:48093–48099

    CAS  PubMed  Google Scholar 

  29. Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25:493–501

    Article  CAS  PubMed  Google Scholar 

  30. Borutaite V, Brown G (2005) What else has to happen for nitric oxide to induce cell death? Biochem Soc Trans 33:1394–1396

    Article  CAS  PubMed  Google Scholar 

  31. Mander P, Borutaite V, Moncada S, Brown GC (2005) Nitric oxide from glial iNOS sensitizes neurons to hypoxic death via mitochondrial respiratory inhibition. J Neurosci Res 79:208–215

    Article  CAS  PubMed  Google Scholar 

  32. Santolini J, Meade AL, Stuehr DJ (2001) Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III. J Biol Chem 276:48887–48898

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr (1998) Proc Natl Acad Sci USA 95:2175–2179

    Article  CAS  PubMed  Google Scholar 

  34. Brown GC, Borutaite V (2006) Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Soc Trans 34:953–956

    Article  CAS  PubMed  Google Scholar 

  35. Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A (2005) Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 95:1132–1143

    Article  CAS  PubMed  Google Scholar 

  36. Tyurina YY, Basova LV, Konduru NV, Tyurin VA, Potapovich AI, Cai P, Bayir H, Stoyanovsky D, Pitt BR, Shvedova AA, Fadeel B, Kagan VE (2007) Nitrosative stress inhibits the aminophospholipid translocase resulting in phosphatidylserine externalization and macrophage engulfment: implications for the resolution of inflammation. J Biol Chem 282:8498–8509

    Article  CAS  PubMed  Google Scholar 

  37. Kang JQ, Chong ZZ, Maiese K (2003) Critical role for Akt1 in the modulation of apoptotic phosphatidylserine exposure and microglial activation. Mol Pharmacol 64:557–569

    Article  CAS  PubMed  Google Scholar 

  38. Kang JQ, Chong ZZ, Maiese K (2003) Akt1 protects against inflammatory microglial activation through maintenance of membrane asymmetry and modulation of cysteine protease activity. J Neurosci Res 74:37–51

    Article  CAS  PubMed  Google Scholar 

  39. Balasubramanian K, Mirnikjoo B, Schroit AJ (2007) Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem 282:18357–18364

    Article  CAS  PubMed  Google Scholar 

  40. Maiese K, Vincent AM (2000) Membrane asymmetry and DNA degradation: functionally distinct determinants of neuronal programmed cell death. J Neurosci Res 59:568–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Relevant research in our laboratory has been funded by the Wellcome Trust, Medical Research Council, Alzheimer’s Research Trust, and European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy C. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, G.C., Neher, J.J. Inflammatory Neurodegeneration and Mechanisms of Microglial Killing of Neurons. Mol Neurobiol 41, 242–247 (2010). https://doi.org/10.1007/s12035-010-8105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8105-9

Keywords

Navigation