Skip to main content

Advertisement

Log in

The Role of Inflammatory and Oxidative Stress Mechanisms in the Pathogenesis of Parkinson’s Disease: Focus on Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation plays a key role in the pathogenesis of Parkinson’s disease (PD). Epidemiologic, animal, human, and therapeutic studies support the role of oxidative stress and inflammatory cascade in initiation and progression of PD. In Parkinson’s disease pathophysiology, activated glia affects neuronal injury and death through production of neurotoxic factors like glutamate, S100B, tumor necrosis factor alpha (TNF-α), prostaglandins, and reactive oxygen and nitrogen species. As disease progresses, inflammatory secretions engage neighboring cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation leading to neurodegeneration. The exact mechanism of these inflammatory mediators in the disease progression is still poorly understood. In this review, we highlight and discuss the mechanisms of oxidative stress and inflammatory mediators by which they contribute to the disease progression. Particularly, we focus on the altered role of astroglial cells that presumably initiate and execute dopaminergic neurodegeneration in PD. In conclusion, we focus on the molecular mechanism of neurodegeneration, which contributes to the basic understanding of the role of neuroinflammation in PD pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NGF:

Nerve growth factor

GDNF:

Glial cell line-derived neurotrophic factor

MANF:

Mesencephalic astrocyte-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

TNF-α:

Tumor necrosis factor-α

NF-κB:

Nuclear factor kappa-B

COX-2:

Cyclooxygenase-2

GFAP:

Glial fibrillary acidic protein

CHOP:

C/EBP homologous protein 10

iNOS:

Inducible nitric oxide synthase

IL-1α:

Interleukin-1α

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

P-p38 MAPK:

Phosphorylated p38 mitogen-activated protein kinase

NO:

Nitrite

References

  1. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23

    Article  CAS  PubMed  Google Scholar 

  2. Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14:846–856

    CAS  PubMed  Google Scholar 

  3. Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, Liu Y, Qian L, Wilson B, Di Monte DA, Ali SF, Zhang J, Block ML, Hong JS (2008) Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Immunol 181:7194–7204

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Asanuma M, Miyazaki I (2008) Nonsteroidal anti-inflammatory drugs in experimental parkinsonian models and Parkinson’s disease. Curr Pharm Des 14:1428–1434

    Article  CAS  PubMed  Google Scholar 

  5. Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P, Iuvone T, Cuomo V, Steardo L (2007) Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 151:1272–1279

    Article  CAS  PubMed  Google Scholar 

  6. Wight RD, Tull CA, Deel MW, Stroope BL, Eubanks AG, Chavis JA, Drew PD, Hensley LL Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochemical and biophysical research communications 426:112-115

  7. Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO (2009) The role of neuroimmunomodulation in Alzheimer’s disease. Ann N Y Acad Sci 1153:240–246

    Article  CAS  PubMed  Google Scholar 

  8. Sekiyama K, Sugama S, Fujita M, Sekigawa A, Takamatsu Y, Waragai M, Takenouchi T, Hashimoto M (2012) Neuroinflammation in Parkinson's disease and related disorders: a lesson from genetically manipulated mouse models of alpha-synucleinopathies. Parkinson's Dis 2012:271732

    Google Scholar 

  9. Tansey MG, Goldberg MS (2009) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis

  10. Albrecht S, Buerger E (2009) Potential neuroprotection mechanisms in PD: focus on dopamine agonist pramipexole. Curr Med Res Opin 25:2977–2987

    Article  CAS  PubMed  Google Scholar 

  11. Klegeris A, McGeer PL (2000) R-(−)-Deprenyl inhibits monocytic THP-1 cell neurotoxicity independently of monoamine oxidase inhibition. Exp Neurol 166:458–464

    Article  CAS  PubMed  Google Scholar 

  12. Guillot TS, Richardson JR, Wang MZ, Li YJ, Taylor TN, Ciliax BJ, Zachrisson O, Mercer A, Miller GW (2008) PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides 42:423–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mena MA, Garcia de Yebenes J (2008) Glial cells as players in parkinsonism: the “good”, the “bad”, and the “mysterious” glia. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatry 14:544–560

    CAS  Google Scholar 

  14. Niranjan R, Kamat PK, Nath C, Shukla R (2010) Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). J Ethnopharmacol 127:625–630

    Article  CAS  PubMed  Google Scholar 

  15. Solano RM, Casarejos MJ, Menendez-Cuervo J, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA (2008) Glial dysfunction in parkin null mice: effects of aging. J Neurosci 28:598–611

    Article  CAS  PubMed  Google Scholar 

  16. Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85:352–370

    Article  CAS  PubMed  Google Scholar 

  17. Niranjan R, Nath C, Shukla R (2011) Guggulipid and nimesulide differentially regulated inflammatory genes mRNA expressions via inhibition of NF-κB and CHOP activation in LPS-stimulated rat astrocytoma cells, C6. Cell Mol Neurobiol 31:755–764

    Article  CAS  PubMed  Google Scholar 

  18. Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246

    Article  CAS  PubMed  Google Scholar 

  19. Brodacki B, Staszewski J, Toczylowska B, Kozlowska E, Drela N, Chalimoniuk M, Stepien A (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441:158–162

    Article  CAS  PubMed  Google Scholar 

  20. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  21. Khandhar SM, Marks WJ (2007) Epidemiology of Parkinson’s disease. Dis Mon 53:200–205

    Article  PubMed  Google Scholar 

  22. Ton TG, Heckbert SR, Longstreth WT Jr, Rossing MA, Kukull WA, Franklin GM, Swanson PD, Smith-Weller T, Checkoway H (2006) Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov Disord Off J Mov Disord Soc 21:964–969

    Article  Google Scholar 

  23. Etminan M, Carleton BC, Samii A (2008) Non-steroidal anti-inflammatory drug use and the risk of Parkinson disease: a retrospective cohort study. J Clin Neurosci 15:576–577

    Article  CAS  PubMed  Google Scholar 

  24. van Staa TP, Smeeth L, Persson I, Parkinson J, Leufkens HG (2008) What is the harm-benefit ratio of Cox-2 inhibitors? Int J Epidemiol 37:405–413

    Article  PubMed  Google Scholar 

  25. Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44:S115–S120

    CAS  PubMed  Google Scholar 

  26. Castano A, Herrera AJ, Cano J, Machado A (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81:150–157

    Article  CAS  PubMed  Google Scholar 

  27. Tian YY, An LJ, Jiang L, Duan YL, Chen J, Jiang B (2006) Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures. Life Sci 80:193–199

    Article  CAS  PubMed  Google Scholar 

  28. Santiago M, Hernandez-Romero MC, Machado A, Cano J (2009) Zocor Forte (simvastatin) has a neuroprotective effect against LPS striatal dopaminergic terminals injury, whereas against MPP+ does not. Eur J Pharmacol 609:58–64

    Article  CAS  PubMed  Google Scholar 

  29. Aloe L, Fiore M (1997) TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett 238:65–68

    Article  CAS  PubMed  Google Scholar 

  30. Wenk GL, McGann-Gramling K, Hauss-Wegrzyniak B, Ronchetti D, Maucci R, Rosi S, Gasparini L, Ongini E (2004) Attenuation of chronic neuroinflammation by a nitric oxide-releasing derivative of the antioxidant ferulic acid. J Neurochem 89:484–493

    Article  CAS  PubMed  Google Scholar 

  31. Carvey PM, Chang Q, Lipton JW, Ling Z (2003) Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson’s disease. Front Biosci 8:s826–s837

    Article  CAS  PubMed  Google Scholar 

  32. Lane EL, Soulet D, Vercammen L, Cenci MA, Brundin P (2008) Neuroinflammation in the generation of post-transplantation dyskinesia in Parkinson’s disease. Neurobiol Dis 32:220–228

    Article  CAS  PubMed  Google Scholar 

  33. Grunblatt E, Mandel S, Youdim MB (2000) MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J Neurol 247(Suppl 2):II95–II102

    PubMed  Google Scholar 

  34. Meredith GE, Totterdell S, Potashkin JA, Surmeier DJ (2008) Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 14(Suppl 2):S112–S115

    Article  PubMed Central  PubMed  Google Scholar 

  35. Siddiqui A, Mallajosyula JK, Rane A, Andersen JK Ability to delay neuropathological events associated with astrocytic MAO-B increase in a parkinsonian mouse model: implications for early intervention on disease progression. Neurobiology of disease 40:444-448

  36. Speciale SG (2002) MPTP: insights into parkinsonian neurodegeneration. Neurotoxicol Teratol 24:607–620

    Article  CAS  PubMed  Google Scholar 

  37. Prasad KN, Cole WC, Kumar B (1999) Multiple antioxidants in the prevention and treatment of Parkinson’s disease. J Am Coll Nutr 18:413–423

    Article  CAS  PubMed  Google Scholar 

  38. Bjarkam CR, Nielsen MS, Glud AN, Rosendal F, Mogensen P, Bender D, Doudet D, Moller A, Sorensen JC (2008) Neuromodulation in a minipig MPTP model of Parkinson disease. Br J Neurosurg 22(Suppl 1):S9–S12

    Article  PubMed  Google Scholar 

  39. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R (2007) Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 13:1925–1928

    Article  CAS  PubMed  Google Scholar 

  40. Reksidler AB, Lima MM, Zanata SM, Machado HB, da Cunha C, Andreatini R, Tufik S, Vital MA (2007) The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesioned rats. Eur J Pharmacol 560:163–175

    Article  CAS  PubMed  Google Scholar 

  41. Ros-Bernal F, Hunot S, Herrero MT, Parnadeau S, Corvol JC, Lu L, Alvarez-Fischer D, Carrillo-de Sauvage MA, Saurini F, Coussieu C, Kinugawa K, Prigent A, Hoglinger G, Hamon M, Tronche F, Hirsch EC, Vyas S Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci USA 108:6632-6637

  42. Pieper HC, Evert BO, Kaut O, Riederer PF, Waha A, Wullner U (2008) Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol Dis 32:521–527

    Article  CAS  PubMed  Google Scholar 

  43. Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M (1999) IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson’s disease. Biomed Pharmacother 53:141–145

    Article  CAS  PubMed  Google Scholar 

  44. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl:277-290

  45. Bian MJ, Li LM, Yu M, Fei J, Huang F (2009) Elevated interleukin-1beta induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine aggravating dopaminergic neurodegeneration in old male mice. Brain Res 1302:256–264

    Article  CAS  PubMed  Google Scholar 

  46. Kraft C, Reggiori F, Peter M (2009) Selective types of autophagy in yeast. Biochim Biophys Acta 1793:1404–1412

    Article  CAS  PubMed  Google Scholar 

  47. Hofmann KW, Schuh AF, Saute J, Townsend R, Fricke D, Leke R, Souza DO, Portela LV, Chaves ML, Rieder CR (2009) Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem Res 34:1401–1404

    Article  CAS  PubMed  Google Scholar 

  48. Allan SM, Pinteaux E (2003) The interleukin-1 system: an attractive and viable therapeutic target in neurodegenerative disease. Curr Drug Targets CNS Neurol Disord 2:293–302

    Article  CAS  PubMed  Google Scholar 

  49. McCoy MK, Ruhn KA, Blesch A, Tansey MG TNF: a key neuroinflammatory mediator of neurotoxicity and neurodegeneration in models of Parkinson’s disease. Advances in experimental medicine and biology 691:539-540

  50. Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S (2003) Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 73:341–350

    Article  CAS  PubMed  Google Scholar 

  51. Ramirez SH, Hasko J, Skuba A, Fan S, Dykstra H, McCormick R, Reichenbach N, Krizbai I, Mahadevan A, Zhang M, Tuma R, Son YJ, Persidsky Y (2012) Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood–brain barrier dysfunction under inflammatory conditions. J Neurosci Off J Soc Neurosci 32:4004–4016

    Article  CAS  Google Scholar 

  52. Tansey MG, Frank-Cannon TC, McCoy MK, Lee JK, Martinez TN, McAlpine FE, Ruhn KA, Tran TA (2008) Neuroinflammation in Parkinson’s disease: is there sufficient evidence for mechanism-based interventional therapy? Front Biosci 13:709–717

    Article  CAS  PubMed  Google Scholar 

  53. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    Article  CAS  PubMed  Google Scholar 

  54. Sriram K, Lin GX, Jefferson AM, Roberts JR, Chapman RS, Chen BT, Soukup JM, Ghio AJ, Antonini JM Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes. Arch Toxicol 84:521-540

  55. Breedveld FC (2005) Tumour necrosis factor antagonists: infliximab, adalimumab and etanercept. Ned Tijdschr Geneeskd 149:2273–2277

    CAS  PubMed  Google Scholar 

  56. Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051

    Article  CAS  PubMed  Google Scholar 

  57. Li B, Guo YS, Sun MM, Dong H, Wu SY, Wu DX, Li CY (2008) The NADPH oxidase is involved in lipopolysaccharide-mediated motor neuron injury. Brain Res 1226:199–208

    Article  CAS  PubMed  Google Scholar 

  58. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25:10180–10187

    Article  CAS  PubMed  Google Scholar 

  59. Sethi V, Yousry TA, Muhlert N, Ron M, Golay X, Wheeler-Kingshott C, Miller DH, Chard DT (2012) Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 83:877–882

    Article  PubMed  Google Scholar 

  60. Ward RJ, Lallemand F, de Witte P, Crichton RR, Piette J, Tipton K, Hemmings K, Pitard A, Page M, Della Corte L, Taylor D, Dexter D Anti-inflammatory actions of a taurine analogue, ethane beta-sultam, in phagocytic cells, in vivo and in vitro. Biochem Pharmacol 81:743-751

  61. Svotelis A, Doyon G, Bernatchez G, Desilets A, Rivard N, Asselin C (2005) IL-1 beta-dependent regulation of C/EBP delta transcriptional activity. Biochem Biophys Res Commun 328:461–470

    Article  CAS  PubMed  Google Scholar 

  62. Parish CL, Finkelstein DI, Tripanichkul W, Satoskar AR, Drago J, Horne MK (2002) The role of interleukin-1, interleukin-6, and glia in inducing growth of neuronal terminal arbors in mice. J Neurosci 22:8034–8041

    CAS  PubMed  Google Scholar 

  63. Purohit DP, Perl DP, Haroutunian V, Powchik P, Davidson M, Davis KL (1998) Alzheimer disease and related neurodegenerative diseases in elderly patients with schizophrenia: a postmortem neuropathologic study of 100 cases. Arch Gen Psychiatry 55:205–211

    Article  CAS  PubMed  Google Scholar 

  64. Chen LC, Smith A, Ben Y, Zukic B, Ignacio S, Moore D, Lee N (2004) Temporal gene expression patterns in G93A/SOD1 mouse. Amyotroph Lateral Scler Other Mot Neuron Disord 5:164–171

    Article  CAS  Google Scholar 

  65. Stefanova N, Kaufmann WA, Humpel C, Poewe W, Wenning GK (2012) Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. Acta Neuropathol 124:51–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, Williamson KS (2006) On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8:2075–2087

    Article  CAS  PubMed  Google Scholar 

  67. Klegeris A, McGeer PL (2002) Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging 23:787–794

    Article  CAS  PubMed  Google Scholar 

  68. Choi SH, Bosetti F (2009) Cyclooxygenase-1 null mice show reduced neuroinflammation in response to beta-amyloid. Aging (Albany NY) 1:234–244

    CAS  Google Scholar 

  69. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17:2746–2755

    CAS  PubMed  Google Scholar 

  70. Consilvio C, Vincent AM, Feldman EL (2004) Neuroinflammation, COX-2, and ALS—a dual role? Exp Neurol 187:1–10

    Article  CAS  PubMed  Google Scholar 

  71. Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5478

    Article  CAS  PubMed  Google Scholar 

  72. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63:901–910

    CAS  PubMed  Google Scholar 

  73. Iuvone T, Esposito G, De Filippis D, Bisogno T, Petrosino S, Scuderi C, Di Marzo V, Steardo L (2007) Cannabinoid CB1 receptor stimulation affords neuroprotection in MPTP-induced neurotoxicity by attenuating S100B up-regulation in vitro. J Mol Med 85:1379–1392

    Article  CAS  PubMed  Google Scholar 

  74. Tzeng SF, Hsiao HY, Mak OT (2005) Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm Allergy 4:335–340

    Article  CAS  PubMed  Google Scholar 

  75. Yasuda Y, Shinagawa R, Yamada M, Mori T, Tateishi N, Fujita S (2007) Long-lasting reactive changes observed in microglia in the striatal and substantia nigral of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res 1138:196–202

    Article  CAS  PubMed  Google Scholar 

  76. Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M, Gustafsson JA (2008) Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis–Parkinson’s dementia. Proc Natl Acad Sci USA 105:2094–2099

    Article  CAS  PubMed  Google Scholar 

  77. Sugama S, Takenouchi T, Kitani H, Fujita M, Hashimoto M (2009) Microglial activation is inhibited by corticosterone in dopaminergic neurodegeneration. J Neuroimmunol 208:104–114

    Article  CAS  PubMed  Google Scholar 

  78. Aoki E, Yano R, Yokoyama H, Kato H, Araki T (2009) Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 86:57–64

    Article  CAS  PubMed  Google Scholar 

  79. Gatev P, Wichmann T (2009) Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cereb Cortex 19:1330–1344

    Article  PubMed  Google Scholar 

  80. Graeber MB, Streit WJ Microglia: biology and pathology. Acta Neuropathol 119:89-105

  81. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  82. Vroon A, Drukarch B, Bol JG, Cras P, Breve JJ, Allan SM, Relton JK, Hoogland PV, Van Dam AM (2007) Neuroinflammation in Parkinson’s patients and MPTP-treated mice is not restricted to the nigrostriatal system: microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. Exp Gerontol 42:762–771

    Article  CAS  PubMed  Google Scholar 

  83. Schneider JS, Denaro FJ (1988) Astrocytic responses to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in cat and mouse brain. J Neuropathol Exp Neurol 47:452–458

    Article  CAS  PubMed  Google Scholar 

  84. Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY, Bai LM (2007) Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 23:125–130

    Article  CAS  PubMed  Google Scholar 

  85. Katunina EA, Malykhina EA, Kuznetsov NV, Avakian GN, Gusev E, Nerobkova LN, Voronina TA, Barskov IV (2006) Antioxidants in complex treatment of Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 106:22–28

    CAS  PubMed  Google Scholar 

  86. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Jenner P (2003) Oxidative stress in Parkinson's disease. Ann Neurol 53(Suppl 3):S26–S36, discussion S36-28

    Article  CAS  PubMed  Google Scholar 

  88. Ahmed M, Luggen M, Herman JH, Weiss KL, Decourten-Myers G, Quinlan JG, Khanna D (2006) Hypertrophic pachymeningitis in rheumatoid arthritis after adalimumab administration. J Rheumatol 33:2344–2346

    CAS  PubMed  Google Scholar 

  89. Favier A (2006) Oxidative stress in human diseases. Ann Pharm Fr 64:390–396

    Article  CAS  PubMed  Google Scholar 

  90. Lee WS, Tsai WJ, Yeh PH, Wei BL, Chiou WF (2006) Divergent role of calcium on Abeta- and MPTP-induced cell death in SK-N-SH neuroblastoma. Life Sci 78:1268–1275

    Article  CAS  PubMed  Google Scholar 

  91. Ortiz-Ortiz MA, Moran JM, Bravosanpedro JM, Gonzalez-Polo RA, Niso-Santano M, Anantharam V, Kanthasamy AG, Soler G, Fuentes JM (2009) Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species. Neurotoxicology 30:1008–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Fukae J, Mizuno Y, Hattori N (2007) Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion 7:58–62

    Article  CAS  PubMed  Google Scholar 

  93. Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:120–131

    Article  CAS  PubMed  Google Scholar 

  94. Jung BD, Shin EJ, Nguyen XK, Jin CH, Bach JH, Park SJ, Nah SY, Wie MB, Bing G, Kim HC Potentiation of methamphetamine neurotoxicity by intrastriatal lipopolysaccharide administration. Neurochem Int 56:229-244

  95. Akundi RS, Huang Z, Eason J, Pandya JD, Zhi L, Cass WA, Sullivan PG, Bueler H Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PloS one 6:e16038

  96. Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    Article  CAS  PubMed  Google Scholar 

  97. Lee M, Kwon BM, Suk K, McGeer E, McGeer PL Effects of obovatol on GSH depleted glia-mediated neurotoxicity and oxidative damage. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 7:173-186

  98. Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. Journal of neuroinflammation 8:137

  99. Niranjan R, Nath C, Shukla R The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free radical research 44:1304-1316

  100. Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurother J Am Soc Exp Neuro Ther 7:413–423

    CAS  Google Scholar 

  101. Hauser DN, Cookson MR (2011) Astrocytes in Parkinson’s disease and DJ-1. J Neurochem 117:357–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Niranjan R, Rajasekar N, Nath C, Shukla R (2012) The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chemico-biological interactions

  103. Rocha SM, Cristovao AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47:407–415

    Article  CAS  PubMed  Google Scholar 

  104. Niranjan R, Nath C, Shukla R (2012) Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 46:1167–1177

    Article  CAS  PubMed  Google Scholar 

  105. Niranjan R, Nath C, Shukla R (2010) The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radic Res 44:1304–1316

    Article  CAS  PubMed  Google Scholar 

  106. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci Off J Soc Neurosci 32:6391–6410

    Article  CAS  Google Scholar 

  107. Karpuk N, Burkovetskaya M, Kielian T (2012) Neuroinflammation alters voltage-dependent conductance in striatal astrocytes. J Neurophysiol 108:112–123

    Article  CAS  PubMed  Google Scholar 

  108. Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC (2011) Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 59:1911–1922

    Article  PubMed Central  PubMed  Google Scholar 

  109. Madeira JM, Beloukhina N, Boudreau K, Boettcher TA, Gurley L, Walker DG, McNeil WS, Klegeris A (2012) Cobalt(II) beta-ketoaminato complexes as novel inhibitors of neuroinflammation. Eur J Pharmacol 676:81–88

    Article  CAS  PubMed  Google Scholar 

  110. Waak J, Weber SS, Waldenmaier A, Gorner K, Alunni-Fabbroni M, Schell H, Vogt-Weisenhorn D, Pham TT, Reumers V, Baekelandt V, Wurst W, Kahle PJ (2009) Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J Off Publ Fed Am Soc Exp Biol 23:2478–2489

    CAS  Google Scholar 

Download references

Acknowledgments

Lab space and facilities provided by Dr. Anil Mishra at the School of Medicine, Division of Gastroenterology and Liver Disease, Case Western Reserve University, Cleveland, OH, USA, is gratefully acknowledged.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituraj Niranjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niranjan, R. The Role of Inflammatory and Oxidative Stress Mechanisms in the Pathogenesis of Parkinson’s Disease: Focus on Astrocytes. Mol Neurobiol 49, 28–38 (2014). https://doi.org/10.1007/s12035-013-8483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8483-x

Keywords

Navigation