Skip to main content

Advertisement

Log in

Remote Neurodegeneration: Multiple Actors for One Play

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy—all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartolomeo P (2011) The quest for the ‘critical lesion site’ in cognitive deficits: problems and perspectives. Cortex 47:1010–1012

    PubMed  Google Scholar 

  2. Zhang J, Zhang Y, Xing S, Liang Z, Zeng J (2012) Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke 43:1700–1705

    PubMed  Google Scholar 

  3. Carter AR, Patel KR, Astafiev SV, Snyder AZ, Rengachary J et al (2012) Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair 26:7–19

    PubMed  Google Scholar 

  4. Viscomi MT, Florenzano F, Latini L, Molinari M (2009) Remote cell death in the cerebellar system. Cerebellum 8:184–191

    PubMed  CAS  Google Scholar 

  5. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    PubMed  Google Scholar 

  6. Block F, Dihne M, Loos M (2005) Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 75:34–365

    Google Scholar 

  7. Pinching AJ, Powell TP (1971) Ultrastructural features of transneuronal cell degeneration in the olfactory system. J Cell Sci 8:253–287

    PubMed  CAS  Google Scholar 

  8. Sakai T, Matsuda H, Watanabe N, Kamei A, Takashima S (1994) Olivocerebellar retrograde trans-synaptic degeneration from the lateral cerebellar hemisphere to the medial inferior olivary nucleus in an infant. Brain Dev 16:229–232

    PubMed  CAS  Google Scholar 

  9. Fitzek C, Fitzek S, Stoeter P (2004) Bilateral Wallerian degeneration of the medial cerebellar peduncles after ponto-mesencephalic infarction. Eur J Radiol 49:198–203

    PubMed  Google Scholar 

  10. Yucel Y, Gupta N (2008) Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 173:465–478

    PubMed  Google Scholar 

  11. Jindahra P, Petrie A, Plant GT (2012) The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 135:534–541

    PubMed  Google Scholar 

  12. Yamada K, Patel U, Shrier DA, Tanaka H, Chang JK et al (1998) MR imaging of CNS tractopathy: wallerian and transneuronal degeneration. AJR Am J Roentgenol 171:813–818

    PubMed  CAS  Google Scholar 

  13. Faden AI (2002) Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol 15:707–712

    PubMed  Google Scholar 

  14. Sofroniew MV, Isacson O (1988) Distribution of degeneration of cholinergic neurons in the septum following axotomy in different portions of the fimbria-fornix: a correlation between degree of cell loss and proximity of neuronal somata to the lesion. J Chem Neuroanat 1:327–337

    PubMed  CAS  Google Scholar 

  15. Fry FJ, Cowan WM (1972) A study of retrograde cell degeneration in the lateral mammillary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell. J Comp Neurol 144:1–23

    PubMed  CAS  Google Scholar 

  16. Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    PubMed  CAS  Google Scholar 

  17. Hendrickson ML, Ling C, Kalil RE (2012) Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 7:e46918

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Al-Abdulla NA, Martin LJ (2002) Projection neurons and interneurons in the lateral geniculate nucleus undergo distinct forms of degeneration ranging from retrograde and transsynaptic apoptosis to transient atrophy after cortical ablation in rat. Neuroscience 115:7–14

    PubMed  CAS  Google Scholar 

  19. Buffo A, Fronte M, Oestreicher AB, Rossi F (1998) Degenerative phenomena and reactive modifications of the adult rat inferior olivary neurons following axotomy and disconnection from their targets. Neuroscience 85:587–604

    PubMed  CAS  Google Scholar 

  20. Buffo A, Carulli D, Rossi F, Strata P (2003) Extrinsic regulation of injury/growth-related gene expression in the inferior olive of the adult rat. Eur J Neurosci 18:2146–2158

    PubMed  Google Scholar 

  21. Viscomi MT, Oddi S, Latini L, Bisicchia E, Maccarrone M et al (2010) The endocannabinoid system: a new entry in remote cell death mechanisms. Exp Neurol 224:56–65

    PubMed  CAS  Google Scholar 

  22. Al-Abdulla NA, Martin LJ (1998) Apoptosis of retrogradely degenerating neurons occurs in association with the accumulation of perikaryal mitochondria and oxidative damage to the nucleus. Am J Pathol 153:447–456

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Barron KD, Doolin PF, Oldershaw JB (1967) Ultrastructural observations on retrograde atrophy of lateral geniculate body. I. Neuronal alterations. J Neuropathol Exp Neurol 26:300–326

    PubMed  CAS  Google Scholar 

  24. Gage FH, Wictorin K, Fischer W, Williams LR, Varon S et al (1986) Retrograde cell changes in medial septum and diagonal band following fimbria-fornix transection: quantitative temporal analysis. Neuroscience 19:241–255

    PubMed  CAS  Google Scholar 

  25. Ruigrok TJ, de Zeeuw CI, Voogd J (1990) Hypertrophy of inferior olivary neurons: a degenerative, regenerative or plasticity phenomenon. Eur J Morphol 28:224–239

    PubMed  CAS  Google Scholar 

  26. Viscomi MT, Florenzano F, Conversi D, Bernardi G, Molinari M (2004) Axotomy dependent purinergic and nitrergic co-expression. Neuroscience 123:393–404

    PubMed  CAS  Google Scholar 

  27. Al-Abdulla NA, Portera-Cailliau C, Martin LJ (1998) Occipital cortex ablation in adult rat causes retrograde neuronal death in the lateral geniculate nucleus that resembles apoptosis. Neuroscience 86:191–209

    PubMed  CAS  Google Scholar 

  28. Martin LJ, Adams NA, Pan Y, Price A, Wong M (2011) The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci 31:359–370

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Martin LJ, Kaiser A, Yu JW, Natale JE, Al-Abdulla NA (2001) Injury-induced apoptosis of neurons in adult brain is mediated by p53-dependent and p53-independent pathways and requires Bax. J Comp Neurol 433:299–311

    PubMed  CAS  Google Scholar 

  30. Martin LJ, Price AC, McClendon KB, Al-Abdulla NA, Subramaniam JR et al (2003) Early events of target deprivation/axotomy-induced neuronal apoptosis in vivo: oxidative stress, DNA damage, p53 phosphorylation and subcellular redistribution of death proteins. J Neurochem 85:234–247

    PubMed  CAS  Google Scholar 

  31. Tetzlaff W, Alexander SW, Miller FD, Bisby MA (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11:2528–2544

    PubMed  CAS  Google Scholar 

  32. Kwon BK, Liu J, Messerer C, Kobayashi NR, McGraw J et al (2002) Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc Natl Acad Sci U S A 99:3246–3251

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Kwon BK, Liu J, Oschipok L, Teh J, Liu ZW et al (2004) Rubrospinal neurons fail to respond to brain-derived neurotrophic factor applied to the spinal cord injury site 2 months after cervical axotomy. Exp Neurol 189:45–57

    PubMed  CAS  Google Scholar 

  34. Molinari M, Viscomi MT, Leggio MG (2013) Hemicerebellectomy. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N (eds) Handbook of the cerebellum and cerebellar disorders. Springer, Netherlands, pp 1579–1594

    Google Scholar 

  35. Castro AJ (1978) Projections of the superior cerebellar peduncle in rats and the development of new connections in response to neonatal hemicerebellectomy. J Comp Neurol 178:611–627

    PubMed  CAS  Google Scholar 

  36. Kolodziejak A, Dziduszko J, Niechaj A, Tarnecki R (2000) Influence of acute cerebellar lesions on somatosensory evoked potentials (SEPs) in cats. J Physiol Pharmacol 51:41–55

    PubMed  CAS  Google Scholar 

  37. Barrionuevo G, Pechadre JC, Gautron M, Guiot F (1978) Negative effects of chronic hemicerebellectomy of epileptiform after-discharges elicited by focal cortical stimulation in baboons (Papio papio). Electroencephalogr Clin Neurophysiol 44:232–235

    PubMed  CAS  Google Scholar 

  38. Bialowas J, Hassler R, Wagner A (1984) Types of synapses and degeneration in the thalamic nucleus ventralis oralis posterior after cerebellar lesions in the squirrel monkey. J Hirnforsch 25:417–437

    PubMed  CAS  Google Scholar 

  39. Goto N, Kaneko M (1981) Olivary enlargement: chronological and morphometric analyses. Acta Neuropathol 54:275–282

    PubMed  CAS  Google Scholar 

  40. Birbamer G, Buchberger W, Felber S, Aichner F (1992) MR appearance of hypertrophic olivary degeneration: temporal relationships. AJNR Am J Neuroradiol 13:1501–1503

    PubMed  CAS  Google Scholar 

  41. Uchino A, Takase Y, Nomiyama K, Egashira R, Kudo S (2006) Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging. Eur Radiol 16:592–597

    PubMed  CAS  Google Scholar 

  42. Soblosky JS, Song JH, Dinh DH (2001) Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects. Behav Brain Res 119:1–13

    PubMed  CAS  Google Scholar 

  43. Tohda C, Kuboyama T (2011) Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 132:57–71

    PubMed  CAS  Google Scholar 

  44. Wang M, Zhai P, Chen X, Schreyer DJ, Sun X et al (2011) Bioengineered scaffolds for spinal cord repair. Tissue Eng Part B Rev 17:177–194

    PubMed  Google Scholar 

  45. Raisman G, Barnett SC, Ramon-Cueto A (2012) Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. Handb Clin Neurol 109:541–549

    PubMed  Google Scholar 

  46. Hains BC, Black JA, Waxman SG (2003) Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 462:328–341

    PubMed  Google Scholar 

  47. Nielson JL, Sears-Kraxberger I, Strong MK, Wong JK, Willenberg R et al (2010) Unexpected survival of neurons of origin of the pyramidal tract after spinal cord injury. J Neurosci 30:11516–11528

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Nielson JL, Strong MK, Steward O (2011) A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol 519:2852–2869

    PubMed  PubMed Central  Google Scholar 

  49. Brown LT (1974) Rubrospinal projections in the rat. J Comp Neurol 154:169–187

    PubMed  CAS  Google Scholar 

  50. Bregman BS, Broude E, McAtee M, Kelley MS (1998) Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp Neurol 149:13–27

    PubMed  CAS  Google Scholar 

  51. Feringa ER, McBride RL, Pruitt JN 2nd (1988) Loss of neurons in the red nucleus after spinal cord transection. Exp Neurol 100:112–120

    PubMed  CAS  Google Scholar 

  52. Fukuoka T, Miki K, Yoshiya I, Noguchi K (1997) Expression of beta-calcitonin gene-related peptide in axotomized rubrospinal neurons and the effect of brain derived neurotrophic factor. Brain Res 767:250–258

    PubMed  CAS  Google Scholar 

  53. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ et al (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    PubMed  CAS  Google Scholar 

  54. Liu PH, Wang YJ, Tseng GF (2003) Close axonal injury of rubrospinal neurons induced transient perineuronal astrocytic and microglial reaction that coincided with their massive degeneration. Exp Neurol 179:111–126

    PubMed  Google Scholar 

  55. Mori F, Himes BT, Kowada M, Murray M, Tessler A (1997) Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats. Exp Neurol 143:45–60

    PubMed  CAS  Google Scholar 

  56. McBride RL, Feringa ER, Garver MK, Williams JK Jr (1989) Prelabeled red nucleus and sensorimotor cortex neurons of the rat survive 10 and 20 weeks after spinal cord transection. J Neuropathol Exp Neurol 48:568–576

    PubMed  CAS  Google Scholar 

  57. Novikova LN, Novikov LN, Kellerth JO (2000) Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci 12:776–780

    PubMed  CAS  Google Scholar 

  58. Houle JD, Ye JH (1999) Survival of chronically-injured neurons can be prolonged by treatment with neurotrophic factors. Neuroscience 94:929–936

    PubMed  CAS  Google Scholar 

  59. Novikova LN, Novikov LN, Kellerth JO (2002) Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 452:255–263

    PubMed  CAS  Google Scholar 

  60. Zhou L, Connors T, Chen DF, Murray M, Tessler A et al (1999) Red nucleus neurons of Bcl-2 over-expressing mice are protected from cell death induced by axotomy. Neuroreport 10:3417–3421

    PubMed  CAS  Google Scholar 

  61. Xu XM, Martin GF (1990) The response of rubrospinal neurons to axotomy in the adult opossum, Didelphis virginiana. Exp Neurol 108:46–54

    PubMed  CAS  Google Scholar 

  62. Wannier-Morino P, Schmidlin E, Freund P, Belhaj-Saif A, Bloch J et al (2008) Fate of rubrospinal neurons after unilateral section of the cervical spinal cord in adult macaque monkeys: effects of an antibody treatment neutralizing Nogo-A. Brain Res 1217:96–109

    PubMed  CAS  Google Scholar 

  63. Liu Y, Himes BT, Murray M, Tessler A, Fischer I (2002) Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol 178:150–164

    PubMed  CAS  Google Scholar 

  64. Xiao M, Klueber KM, Guo Z, Lu C, Wang H et al (2007) Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis 26:363–374

    PubMed  CAS  Google Scholar 

  65. Little JW, Halar E (1985) Temporal course of motor recovery after Brown-Sequard spinal cord injuries. Paraplegia 23:39–46

    PubMed  CAS  Google Scholar 

  66. Roth EJ, Park T, Pang T, Yarkony GM, Lee MY (1991) Traumatic cervical Brown-Sequard and Brown-Sequard-plus syndromes: the spectrum of presentations and outcomes. Paraplegia 29:582–589

    PubMed  CAS  Google Scholar 

  67. Khaing ZZ, Geissler SA, Jiang S, Milman BD, Aguilar SV et al (2012) Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery. J Neurotrauma 29:488–498

    PubMed  Google Scholar 

  68. Dihne M, Grommes C, Lutzenburg M, Witte OW, Block F (2002) Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke 33:3006–3011

    PubMed  Google Scholar 

  69. Ross DT, Ebner FF (1990) Thalamic retrograde degeneration following cortical injury: an excitotoxic process? Neuroscience 35:525–550

    PubMed  CAS  Google Scholar 

  70. Braeuninger S, Kleinschnitz C (2009) Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Transl Stroke Med 1:8

    PubMed  PubMed Central  Google Scholar 

  71. Agarwala S, Kalil RE (1998) Axotomy-induced neuronal death and reactive astrogliosis in the lateral geniculate nucleus following a lesion of the visual cortex in the rat. J Comp Neurol 392:252–263

    PubMed  CAS  Google Scholar 

  72. Lieberman AR, Webster KE (1974) Proceedings: terminal and retrograde degeneration in the dorsal lateral geniculate nucleus (LGd) of the rat following cortical lesions. J Anat 118:384–386

    PubMed  CAS  Google Scholar 

  73. Matthews MA (1973) Death of the central neuron: an electron microscopic study of thalamic retrograde degeneration following cortical ablation. J Neurocytol 2:265–288

    PubMed  CAS  Google Scholar 

  74. Briggs F, Usrey WM (2008) Emerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Florenzano F, Viscomi MT, Cavaliere F, Volonte C, Molinari M (2002) Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei. Neuroscience 115:425–434

    PubMed  CAS  Google Scholar 

  76. Barron KD (2004) The axotomy response. J Neurol Sci 220:119–121

    PubMed  Google Scholar 

  77. Lieberman AR, Webster KE (1974) Aspects of the synaptic organization of intrinsic neurons in the dorsal lateral geniculate nucleus. An ultrastructural study of the normal and of the experimentally deafferented nucleus in the rat. J Neurocytol 3:677–710

    PubMed  CAS  Google Scholar 

  78. Tseng GF, Wang YJ, Lai QC (1996) Perineuronal microglial reactivity following proximal and distal axotomy of rat rubrospinal neurons. Brain Res 715:32–43

    PubMed  CAS  Google Scholar 

  79. Wang YJ, Chen JR, Tseng GF (2002) Fate of the soma and dendrites of cord-projection central neurons after proximal and distal spinal axotomy: an intracellular dye injection study. J Neurotrauma 19:1487–1502

    PubMed  Google Scholar 

  80. Ben Taib NO, Manto M, Pandolfo M, Brotchi J (2005) Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol 567:293–300

    PubMed  Google Scholar 

  81. Oulad Ben Taib N, Manto M (2006) Hemicerebellectomy impairs the modulation of cutaneomuscular reflexes by the motor cortex following repetitive somatosensory stimulation. Brain Res 1090:110–115

    PubMed  CAS  Google Scholar 

  82. Ben Taib NO, Manto M (2009) Trains of transcranial direct current stimulation antagonize motor cortex hypoexcitability induced by acute hemicerebellectomy. J Neurosurg 111:796–806

    PubMed  Google Scholar 

  83. Missitzi J, Gentner R, Geladas N, Politis P, Karandreas N et al (2011) Plasticity in human motor cortex is in part genetically determined. J Physiol 589:297–306

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Pearson-Fuhrhop KM, Burke E, Cramer SC (2012) The influence of genetic factors on brain plasticity and recovery after neural injury. Curr Opin Neurol 25:682–688

    Google Scholar 

  85. Hohlfeld R, Kerschensteiner M, Meinl E (2007) Dual role of inflammation in CNS disease. Neurology 68:S58–S63, discussion S91–56

    PubMed  Google Scholar 

  86. Esiri MM (2007) The interplay between inflammation and neurodegeneration in CNS disease. J Neuroimmunol 184:4–16

    PubMed  CAS  Google Scholar 

  87. Stoll G, Jander S, Schroeter M (2002) Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 513:87–113

    PubMed  CAS  Google Scholar 

  88. Dihne M, Block F (2001) Focal ischemia induces transient expression of IL-6 in the substantia nigra pars reticulata. Brain Res 889:165–173

    PubMed  CAS  Google Scholar 

  89. Viscomi MT, Florenzano F, Latini L, Amantea D, Bernardi G et al (2008) Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience 154:1267–1282

    PubMed  CAS  Google Scholar 

  90. Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP et al (2012) Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 349:169–180

    PubMed  PubMed Central  Google Scholar 

  91. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed  PubMed Central  Google Scholar 

  93. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    PubMed  CAS  Google Scholar 

  94. Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196:168–179

    PubMed  CAS  Google Scholar 

  95. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Oddi S, Latini L, Viscomi MT, Bisicchia E, Molinari M et al (2012) Distinct regulation of nNOS and iNOS by CB2 receptor in remote delayed neurodegeneration. J Mol Med (Berl) 90:371–387

    CAS  Google Scholar 

  97. Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    PubMed  CAS  Google Scholar 

  98. van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19:393–411

    PubMed  Google Scholar 

  99. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    PubMed  CAS  Google Scholar 

  100. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    PubMed  CAS  Google Scholar 

  101. Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788

    PubMed  CAS  Google Scholar 

  102. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    PubMed  CAS  Google Scholar 

  103. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    PubMed  CAS  Google Scholar 

  104. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    PubMed  CAS  Google Scholar 

  105. Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66:1–15

    PubMed  CAS  Google Scholar 

  106. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874

    PubMed  CAS  Google Scholar 

  107. Viscomi MT, Oddi S, Latini L, Pasquariello N, Florenzano F et al (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci 29:4564–4570

    PubMed  CAS  Google Scholar 

  108. Viscomi MT, D'Amelio M, Cavallucci V, Latini L, Bisicchia E et al (2012) Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 8:222–235

    PubMed  CAS  Google Scholar 

  109. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    PubMed  CAS  Google Scholar 

  111. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Inoue Y, Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21:664–670

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139

    PubMed  CAS  Google Scholar 

  114. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    PubMed  CAS  Google Scholar 

  115. Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 27:411–425

    PubMed  CAS  Google Scholar 

  116. Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29:528–535

    PubMed  CAS  Google Scholar 

  117. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG (2012) Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist 18:224–236

    PubMed  CAS  Google Scholar 

  119. Viscomi MT, D'Amelio M (2012) The “Janus-faced role” of autophagy in neuronal sickness: focus on neurodegeneration. Mol Neurobiol 46:513–521

    PubMed  CAS  Google Scholar 

  120. Xing S, Zhang Y, Li J, Zhang J, Li Y et al (2012) Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy 8:63–76

    PubMed  CAS  Google Scholar 

  121. Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67:1581–1588

    PubMed  CAS  Google Scholar 

  122. Gordy C, He YW (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3:17–27

    PubMed  Google Scholar 

  123. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245

    PubMed  CAS  Google Scholar 

  124. Rubinstein AD, Kimchi A (2012) Life in the balance—a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125:5259–5268

    PubMed  CAS  Google Scholar 

  125. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN et al (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    PubMed  CAS  Google Scholar 

  126. Reynolds A, Laurie C, Mosley RL, Gendelman HE (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325

    PubMed  CAS  Google Scholar 

  127. Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration—functional alteration or just a biomarker? Free Radic Biol Med 45:357–366

    PubMed  CAS  Google Scholar 

  128. Baldwin SA, Broderick R, Osbourne D, Waeg G, Blades DA et al (1998) The presence of 4-hydroxynonenal/protein complex as an indicator of oxidative stress after experimental spinal cord contusion in a rat model. J Neurosurg 88:874–883

    PubMed  CAS  Google Scholar 

  129. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    PubMed  CAS  Google Scholar 

  130. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    PubMed  CAS  Google Scholar 

  131. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Nakamura T, Cho DH, Lipton SA (2012) Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 238:12–21

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Xu M, Yip GW, Gan LT, Ng YK (2005) Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection. Brain Res 1055:137–142

    PubMed  CAS  Google Scholar 

  134. Abe N, Cavalli V (2008) Nerve injury signaling. Curr Opin Neurobiol 18:276–283

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Rishal I, Fainzilber M (2010) Retrograde signaling in axonal regeneration. Exp Neurol 223:5–10

    PubMed  CAS  Google Scholar 

  136. Rishal I, Fainzilber M (2013) Axon-soma communication in neuronal injury. Nat Rev Neurosci 14:278–291

    Google Scholar 

  137. Ibanez CF (2007) Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol 17:519–528

    PubMed  CAS  Google Scholar 

  138. Ambron RT, Walters ET (1996) Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol Neurobiol 13:61–79

    PubMed  CAS  Google Scholar 

  139. Mandolesi G, Menna E, Harauzov A, von Bartheld CS, Caleo M et al (2005) A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity. Curr Biol 15:2119–2124

    PubMed  CAS  Google Scholar 

  140. Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38:78–100

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Sung YJ, Povelones M, Ambron RT (2001) RISK-1: a novel MAPK homologue in axoplasm that is activated and retrogradely transported after nerve injury. J Neurobiol 47:67–79

    PubMed  CAS  Google Scholar 

  142. Cho Y, Sloutsky R, Naegle KM, Cavalli V (2013) Injury-Induced HDAC5 Nuclear Export Is Essential for Axon Regeneration. Cell 155:894–908

    PubMed  CAS  Google Scholar 

  143. Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Rigaud M, Gemes G, Weyker PD, Cruikshank JM, Kawano T et al (2009) Axotomy depletes intracellular calcium stores in primary sensory neurons. Anesthesiology 111:381–392

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Perry RB, Doron-Mandel E, Iavnilovitch E, Rishal I, Dagan SY et al (2012) Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 75:294–305

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Cavalli V, Kujala P, Klumperman J, Goldstein LS (2005) Sunday Driver links axonal transport to damage signaling. J Cell Biol 168:775–787

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Lingor P, Koch JC, Tonges L, Bahr M (2012) Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 349:289–311

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  149. Perry RB, Fainzilber M (2009) Nuclear transport factors in neuronal function. Semin Cell Dev Biol 20:600–606

    PubMed  CAS  Google Scholar 

  150. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    PubMed  CAS  Google Scholar 

  151. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    PubMed  CAS  Google Scholar 

  152. North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7:346–357

    PubMed  CAS  Google Scholar 

  153. Volonte C, Amadio S, Cavaliere F, D'Ambrosi N, Vacca F et al (2003) Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:403–412

    PubMed  CAS  Google Scholar 

  154. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    PubMed  CAS  Google Scholar 

  155. Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12

    PubMed  CAS  Google Scholar 

  156. Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22:477–481

    PubMed  CAS  Google Scholar 

  157. Lipton SA, Singel DJ, Stamler JS (1994) Nitric oxide in the central nervous system. Prog Brain Res 103:359–364

    PubMed  CAS  Google Scholar 

  158. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT et al (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739

    PubMed  CAS  Google Scholar 

  159. Xu M, Ng YK, Leong SK (2000) Neuroprotective and neurodestructive functions of nitric oxide after spinal cord hemisection. Exp Neurol 161:472–480

    PubMed  CAS  Google Scholar 

  160. Yu Y, Matsuyama Y, Nakashima S, Yanase M, Kiuchi K et al (2004) Effects of MPSS and a potent iNOS inhibitor on traumatic spinal cord injury. Neuroreport 15:2103–2107

    PubMed  CAS  Google Scholar 

  161. Chen S, Aston-Jones G (1994) Cerebellar injury induces NADPH diaphorase in Purkinje and inferior olivary neurons in the rat. Exp Neurol 126:270–276

    PubMed  CAS  Google Scholar 

  162. Saxon DW, Beitz AJ (1994) Cerebellar injury induces NOS in Purkinje cells and cerebellar afferent neurons. Neuroreport 5:809–812

    PubMed  CAS  Google Scholar 

  163. Saxon DW, Beitz AJ (1996) Induction of NADPH-diaphorase/nitric oxide synthase in the brainstem trigeminal system resulting from cerebellar lesions. J Comp Neurol 371:41–71

    PubMed  CAS  Google Scholar 

  164. Thippeswamy T, McKay JS, Quinn JP, Morris R (2006) Nitric oxide, a biological double-faced janus—is this good or bad? Histol Histopathol 21:445–458

    PubMed  CAS  Google Scholar 

  165. Bari M, Battista N, Fezza F, Gasperi V, Maccarrone M (2006) New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev Med Chem 6:257–268

    PubMed  CAS  Google Scholar 

  166. Di Marzo V (2008) Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 160:1–24

    PubMed  Google Scholar 

  167. Bermudez-Silva FJ, Viveros MP, McPartland JM, Rodriguez de Fonseca F (2010) The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacol Biochem Behav 95:375–382

    PubMed  CAS  Google Scholar 

  168. Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8:585–589

    PubMed  Google Scholar 

  169. El Manira A, Kyriakatos A (2010) The role of endocannabinoid signaling in motor control. Physiology (Bethesda) 25:230–238

    Google Scholar 

  170. Pacher P, Batkai S, Kunos G (2005) Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology 48:1130–1138

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Pacher P, Steffens S (2009) The emerging role of the endocannabinoid system in cardiovascular disease. Semin Immunopathol 31:63–77

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Shohami E, Cohen-Yeshurun A, Magid L, Algali M, Mechoulam R (2011) Endocannabinoids and traumatic brain injury. Br J Pharmacol 163:1402–1410

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Sanchez AJ, Garcia-Merino A (2012) Neuroprotective agents: cannabinoids. Clin Immunol 142:57–67

    PubMed  CAS  Google Scholar 

  174. Galve-Roperh I, Aguado T, Palazuelos J, Guzman M (2008) Mechanisms of control of neuron survival by the endocannabinoid system. Curr Pharm Des 14:2279–2288

    PubMed  CAS  Google Scholar 

  175. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A et al (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    PubMed  CAS  Google Scholar 

  176. Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C et al (2009) The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 33:57–71

    PubMed  CAS  Google Scholar 

  177. Fernandez-Ruiz J, Pazos MR, Garcia-Arencibia M, Sagredo O, Ramos JA (2008) Role of CB2 receptors in neuroprotective effects of cannabinoids. Mol Cell Endocrinol 286:S91–S96

    PubMed  CAS  Google Scholar 

  178. Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017–1030

    PubMed  PubMed Central  Google Scholar 

  179. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J et al (2012) Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43:211–219

    PubMed  CAS  Google Scholar 

  180. Pacher P, Mechoulam R (2011) Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 50:193–211

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Han S, Thatte J, Buzard DJ, Jones RM (2013) Therapeutic utility of cannabinoid receptor type 2 (CB2) selective agonists. J Med Chem 56:8224–8256

    PubMed  CAS  Google Scholar 

  182. Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E (2010) The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets 14:387–404

    PubMed  CAS  Google Scholar 

  183. Gonzalez C, Herradon E, Abalo R, Vera G, Perez-Nievas BG et al (2011) Cannabinoid/agonist WIN 55,212-2 reduces cardiac ischaemia-reperfusion injury in Zucker diabetic fatty rats: role of CB2 receptors and iNOS/eNOS. Diabetes Metab Res Rev 27:331–340

    PubMed  CAS  Google Scholar 

  184. Maccarrone M, Fiori A, Bari M, Granata F, Gasperi V et al (2006) Regulation by cannabinoid receptors of anandamide transport across the blood-brain barrier and through other endothelial cells. Thromb Haemost 95:117–127

    PubMed  CAS  Google Scholar 

  185. Florenzano F, Viscomi MT, Amadio S, D'Ambrosi N, Volonte C et al (2008) Do ATP and NO interact in the CNS? Prog Neurobiol 84:40–56

    PubMed  CAS  Google Scholar 

  186. Bisicchia E, Chiurchiu V, Viscomi MT, Latini L, Fezza F et al (2013) Activation of type-2 cannabinoid receptor inhibits neuroprotective and antiinflammatory actions of glucocorticoid receptor alpha: when one is better than two. Cell Mol Life Sci 70:2191–2204

    PubMed  CAS  Google Scholar 

  187. Kojika S, Sugita K, Inukai T, Saito M, Iijima K et al (1996) Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins. Leukemia 10:994–999

    PubMed  CAS  Google Scholar 

  188. Matysiak M, Makosa B, Walczak A, Selmaj K (2008) Patients with multiple sclerosis resisted to glucocorticoid therapy: abnormal expression of heat-shock protein 90 in glucocorticoid receptor complex. Mult Scler 14:919–926

    PubMed  CAS  Google Scholar 

  189. Buffon F, Molko N, Herve D, Porcher R, Denghien I et al (2005) Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts. J Cereb Blood Flow Metab 25:641–650

    PubMed  Google Scholar 

  190. Herve D, Molko N, Pappata S, Buffon F, LeBihan D et al (2005) Longitudinal thalamic diffusion changes after middle cerebral artery infarcts. J Neurol Neurosurg Psychiatry 76:200–205

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Barnes PJ (2011) Glucocorticosteroids: current and future directions. Br J Pharmacol 163:29–43

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Chrousos GP, Kino T (2005) Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci STKE 2005:pe48

    PubMed  Google Scholar 

  193. Kino T, Su YA, Chrousos GP (2009) Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci 66:3435–3448

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353:1711–1723

    PubMed  CAS  Google Scholar 

  195. Sayer FT, Kronvall E, Nilsson OG (2006) Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J 6:335–343

    PubMed  Google Scholar 

  196. Lee HC, Cho DY, Lee WY, Chuang HC (2007) Pitfalls in treatment of acute cervical spinal cord injury using high-dose methylprednisolone: a retrospect audit of 111 patients. Surg Neurol 68(Suppl 1):S37–S41, discussion S41–32

    PubMed  Google Scholar 

  197. Sharma A (2012) Pharmacological management of acute spinal cord injury. J Assoc Physicians India 60(Suppl):13–18

    Google Scholar 

  198. Mu X, Azbill RD, Springer JE (2000) Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma 17:773–780

    PubMed  CAS  Google Scholar 

  199. Weaver LC, Gris D, Saville LR, Oatway MA, Chen Y et al (2005) Methylprednisolone causes minimal improvement after spinal cord injury in rats, contrasting with benefits of an anti-integrin treatment. J Neurotrauma 22:1375–1387

    PubMed  Google Scholar 

  200. Pereira JE, Costa LM, Cabrita AM, Couto PA, Filipe VM et al (2009) Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Exp Neurol 220:71–81

    PubMed  CAS  Google Scholar 

  201. Gomes JA, Stevens RD, Lewin JJ 3rd, Mirski MA, Bhardwaj A (2005) Glucocorticoid therapy in neurologic critical care. Crit Care Med 33:1214–1224

    PubMed  CAS  Google Scholar 

  202. Chen X, Zhang KL, Yang SY, Dong JF, Zhang JN (2009) Glucocorticoids aggravate retrograde memory deficiency associated with traumatic brain injury in rats. J Neurotrauma 26:253–260

    PubMed  Google Scholar 

  203. Chen X, Zhang B, Chai Y, Dong B, Lei P et al (2011) Methylprednisolone exacerbates acute critical illness-related corticosteroid insufficiency associated with traumatic brain injury in rats. Brain Res 1382:298–307

    PubMed  CAS  Google Scholar 

  204. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA et al (2007) Guidelines for the management of severe traumatic brain injury. XV. Steroids. J Neurotrauma 24(Suppl 1):S91–S95

    PubMed  Google Scholar 

  205. Yong VW, Wells J, Giuliani F, Casha S, Power C et al (2004) The promise of minocycline in neurology. Lancet Neurol 3:744–751

    PubMed  Google Scholar 

  206. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21:2580–2588

    PubMed  CAS  Google Scholar 

  207. Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS et al (2006) Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 97:1314–1326

    PubMed  CAS  Google Scholar 

  208. Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH et al (2007) Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 27:7751–7761

    PubMed  CAS  Google Scholar 

  209. Cho DC, Cheong JH, Yang MS, Hwang SJ, Kim JM et al (2011) The effect of minocycline on motor neuron recovery and neuropathic pain in a rat model of spinal cord injury. J Korean Neurosurg Soc 49:83–91

    PubMed  PubMed Central  Google Scholar 

  210. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126:1628–1637

    PubMed  Google Scholar 

  211. Lam TI, Bingham D, Chang TJ, Lee CC, Shi J et al (2013) Beneficial effects of minocycline and botulinum toxin-induced constraint physical therapy following experimental traumatic brain injury. Neurorehabil Neural Repair 27:889–899

    PubMed  Google Scholar 

  212. Homsi S, Federico F, Croci N, Palmier B, Plotkine M et al (2009) Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 1291:122–132

    PubMed  CAS  Google Scholar 

  213. Homsi S, Piaggio T, Croci N, Noble F, Plotkine M et al (2010) Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 27:911–921

    PubMed  Google Scholar 

  214. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB et al (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    PubMed  CAS  Google Scholar 

  215. Diguet E, Fernagut PO, Wei X, Du Y, Rouland R et al (2004) Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. Eur J Neurosci 19:3266–3276

    PubMed  Google Scholar 

  216. Yang L, Sugama S, Chirichigno JW, Gregorio J, Lorenzl S et al (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res 74:278–285

    PubMed  CAS  Google Scholar 

  217. Pinzon A, Marcillo A, Quintana A, Stamler S, Bunge MB et al (2008) A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model. Brain Res 1243:146–151

    PubMed  CAS  PubMed Central  Google Scholar 

  218. Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A et al (2007) Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 204:220–233

    PubMed  CAS  Google Scholar 

  219. Viscomi MT, Latini L, Florenzano F, Bernardi G, Molinari M (2008) Minocycline attenuates microglial activation but fails to mitigate degeneration in inferior olive and pontine nuclei after focal cerebellar lesion. Cerebellum 7:401–405

    PubMed  CAS  Google Scholar 

  220. Chen X, Ma X, Jiang Y, Pi R, Liu Y et al (2011) The prospects of minocycline in multiple sclerosis. J Neuroimmunol 235:1–8

    PubMed  CAS  Google Scholar 

  221. Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol 67:1442–1448

    PubMed  PubMed Central  Google Scholar 

  222. Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A et al (2010) Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol 176:1193–1202

    PubMed  CAS  PubMed Central  Google Scholar 

  223. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295

    PubMed  CAS  PubMed Central  Google Scholar 

  224. Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12:437–452

    PubMed  CAS  Google Scholar 

  225. Chen H, Qu Y, Tang B, Xiong T, Mu D (2012) Role of mammalian target of rapamycin in hypoxic or ischemic brain injury: potential neuroprotection and limitations. Rev Neurosci 23:279–287

    PubMed  CAS  Google Scholar 

  226. Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009) The role of autophagy in spinal cord injury. Autophagy 5:390–392

    PubMed  CAS  Google Scholar 

  227. Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009) Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 33:143–148

    PubMed  CAS  Google Scholar 

  228. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E (2011) Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine (Phila Pa 1976) 36:E1427–E1434

    Google Scholar 

  229. Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E (2012) Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma 29:946–956

    PubMed  Google Scholar 

  230. Chen HC, Fong TH, Hsu PW, Chiu WT (2013) Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection. J Surg Res 179:e203–e210

    PubMed  CAS  Google Scholar 

  231. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86–93

    PubMed  CAS  Google Scholar 

  232. Luo CL, Li BX, Li QQ, Chen XP, Sun YX et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    PubMed  CAS  Google Scholar 

  233. Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51

    PubMed  CAS  Google Scholar 

  234. Pertwee RG (2005) The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 7:E625–E654

    PubMed  CAS  PubMed Central  Google Scholar 

  235. van der Stelt M, Di Marzo V (2005) Cannabinoid receptors and their role in neuroprotection. Neuromolecular Med 7:37–50

    PubMed  Google Scholar 

  236. Bahr BA, Karanian DA, Makanji SS, Makriyannis A (2006) Targeting the endocannabinoid system in treating brain disorders. Expert Opin Investig Drugs 15:351–365

    PubMed  CAS  Google Scholar 

  237. Scotter EL, Abood ME, Glass M (2010) The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 160:480–498

    PubMed  CAS  PubMed Central  Google Scholar 

  238. Velayudhan L, Van Diepen E, Marudkar M, Hands O, Suribhatla S et al (2013) Therapeutic potential of cannabinoids in neurodegenerative disorders: a selective review. Curr Pharm Des 33(3):755–766

    CAS  Google Scholar 

  239. Sagredo O, Pazos MR, Valdeolivas S, Fernandez-Ruiz J (2012) Cannabinoids: novel medicines for the treatment of Huntington's disease. Recent Pat CNS Drug Discov 7:41–48

    PubMed  CAS  Google Scholar 

  240. Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25:477–484

    PubMed  CAS  Google Scholar 

  241. Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R et al (2006) The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 22:257–264

    PubMed  CAS  Google Scholar 

  242. Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E (2010) The endocannabinoid 2-arachidonoylglycerol reduces lesion expansion and white matter damage after spinal cord injury. Neurobiol Dis 38:304–312

    PubMed  CAS  Google Scholar 

  243. Amenta PS, Jallo JI, Tuma RF, Elliott MB (2012) A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 90:2293–2305

    PubMed  CAS  Google Scholar 

  244. Elliott MB, Tuma RF, Amenta PS, Barbe MF, Jallo JI (2011) Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury. J Neurotrauma 28:973–981

    PubMed  Google Scholar 

  245. Adhikary S, Li H, Heller J, Skarica M, Zhang M et al (2011) Modulation of inflammatory responses by a cannabinoid-2-selective agonist after spinal cord injury. J Neurotrauma 28:2417–2427

    PubMed  PubMed Central  Google Scholar 

  246. Derkinderen P, Valjent E, Toutant M, Corvol JC, Enslen H et al (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 23:2371–2382

    PubMed  CAS  Google Scholar 

  247. Molina-Holgado F, Pinteaux E, Heenan L, Moore JD, Rothwell NJ et al (2005) Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/AKT signaling. Mol Cell Neurosci 28:189–194

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Health (Ricerca Corrente - MM), by the Wings for Life Spinal Cord Research Foundation (M.T.V.), by the International Foundation for Research in Paraplegia (IFP) (M.T.V.), and by the program Young Researchers of Italian Ministry of Health (GR10.184; M.T.V.). We thank Prof. G. Bernardi for his continuous support and encouragement. The professional editorial work of Blue Pencil Science is also acknowledged.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Viscomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viscomi, M.T., Molinari, M. Remote Neurodegeneration: Multiple Actors for One Play. Mol Neurobiol 50, 368–389 (2014). https://doi.org/10.1007/s12035-013-8629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8629-x

Keywords

Navigation