Skip to main content

Advertisement

Log in

Endoplasmic Reticulum Stress: Relevance and Therapeutics in Central Nervous System Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress plays an important role in a range of neurological disorders, such as neurodegenation diseases, cerebral ischemia, spinal cord injury, sclerosis, and diabetic neuropathy. Protein misfolding and accumulation in the ER lumen initiate unfolded protein response in energy-starved neurons which are relevant to toxic effects. In neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, ER dysfunction is well recognized, but the mechanisms remain unclear. In stroke and ischemia, spinal cord injury, and amyotrophic lateral sclerosis, chronic activation of ER stress is considered as main pathogeny which causes neuronal disorders. By targeting components of these ER signaling responses, to explore clinical treatment strategies or new drugs in CNS neurological diseases might become possible and valuable in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426(6968):891–894

    Article  CAS  PubMed  Google Scholar 

  2. Fu S, Watkins SM, Hotamisligil GS (2012) The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 15(5):623–634

    Article  CAS  PubMed  Google Scholar 

  3. Claudio N, Dalet A, Gatti E, Pierre P (2013) Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J 32(9):1214–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Volmer R, van der Ploeg K, Ron D (2013) Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A 110(12):4628–4633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    Article  CAS  PubMed  Google Scholar 

  7. Hara T, Mahadevan J, Kanekura K, Hara M, Lu S, Urano F (2013) Calcium efflux from the endoplasmic reticulum leads to beta cell death. Endocrinology:en20131519

  8. Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15(2):364–375

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B, Dubeau L, Hinton DR, Lee AS (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17(3):488–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Prell T, Lautenschlager J, Grosskreutz J (2013) Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 54(2):132–143

    Article  CAS  PubMed  Google Scholar 

  11. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12(1):105–118

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23(11):547–555

    Article  CAS  PubMed  Google Scholar 

  13. Jager R, Bertrand MJ, Gorman AM, Vandenabeele P, Samali A (2012) The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell 104(5):259–270

    Article  CAS  PubMed  Google Scholar 

  14. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, Wek RC (2011) The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 22(22):4390–4405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7(8):766–772

    Article  CAS  PubMed  Google Scholar 

  16. Viana RJ, Nunes AF, Rodrigues CM (2012) Endoplasmic reticulum enrollment in Alzheimer’s disease. Mol Neurobiol 46:522–534

    Article  CAS  PubMed  Google Scholar 

  17. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21(4):1249–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nickson P, Toth A, Erhardt P (2007) PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc Res 73(1):48–56. doi:10.1016/j.cardiores.2006.10.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang X, Olberding KE, White C, Li C (2011) Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ 18(1):38–47

    Article  PubMed Central  PubMed  Google Scholar 

  20. Rodriguez DA, Zamorano S, Lisbona F, Rojas-Rivera D, Urra H, Cubillos-Ruiz JR, Armisen R, Henriquez DR, Cheng EH, Letek M, Vaisar T, Irrazabal T, Gonzalez-Billault C, Letai A, Pimentel-Muinos FX, Kroemer G, Hetz C (2012) BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1alpha. EMBO J 31(10):2322–2335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park UJ (2010) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42:386–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S (2011) Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson’s disease. J Neurochem 116:588–605

    Article  CAS  PubMed  Google Scholar 

  23. Kieran D, Woods I, Villunger A, Strasser A, Prehn JH (2007) Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci U S A 104:20606–20611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Osada N, Kosuge Y, Ishige K, Ito Y (2010) Characterization of neuronal and astroglial responses to ER stress in the hippocampal CA1 area in mice following transient forebrain ischemia. Neurochem Int 57:1–7

    Article  CAS  PubMed  Google Scholar 

  25. Ohri SS, Maddie MA, Zhang Y, Shields CB, Hetman M, Whittemore SR (2012) Deletion of the pro-apoptotic endoplasmic reticulum stress response effector CHOP does not result in improved locomotor function after severe contusive spinal cord injury. J Neurotrauma 29:579–588

    Article  PubMed Central  PubMed  Google Scholar 

  26. Honjo Y, Ito H, Horibe T, Takahashi R, Kawakami K (2010) Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res 1349:90–96

    Article  CAS  PubMed  Google Scholar 

  27. Chadwick W, Mitchell N, Martin B, Maudsley S (2012) Therapeutic targeting of the endoplasmic reticulum in Alzheimer’s disease. Curr Alzheim Res 9(1):110–119

    Article  CAS  Google Scholar 

  28. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, An L, Wang ZY (2013) Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 19(10):820–833

    CAS  PubMed  Google Scholar 

  30. Liu SY, Wang W, Cai ZY, Yao LF, Chen ZW, Wang CY, Zhao B, Li KS (2013) Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer’s disease. CNS Neurosci Ther 19(4):229–234

    Article  PubMed  Google Scholar 

  31. Wiley JC, Meabon JS, Frankowski H, Smith EA, Schecterson LC, Bothwell M, Ladiges WC (2010) Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells. PLoS ONE 5(2):e9135

    Article  PubMed Central  PubMed  Google Scholar 

  32. Prasanthi JR, Larson T, Schommer J, Ghribi O (2011) Silencing GADD153/CHOP gene expression protects against Alzheimer’s disease-like pathology induced by 27-hydroxycholesterol in rabbit hippocampus. PLoS ONE 6(10):e26420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Costa RO, Ferreiro E, Oliveira CR, Pereira CM (2013) Inhibition of mitochondrial cytochrome c oxidase potentiates Abeta-induced ER stress and cell death in cortical neurons. Mol Cell Neurosci 52:1–8

    Article  CAS  PubMed  Google Scholar 

  34. Mercado G, Valdes P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19(3):165–175

    Article  CAS  PubMed  Google Scholar 

  35. Zhou JX, Zhang HB, Huang Y, He Y, Zheng Y, Anderson JP, Gai WP, Liang ZG, Wang Y, Ren XM, Wang Q, Gong XL, Yang J, Wang X, Halliday G, Wang XM (2013) Tenuigenin attenuates alpha-synuclein-induced cytotoxicity by down-regulating polo-like kinase 3. CNS Neurosci Ther 19(9):688–694

    Article  CAS  PubMed  Google Scholar 

  36. Caviness JN, Lue L, Adler CH, Walker DG (2011) Parkinson’s disease dementia and potential therapeutic strategies. CNS Neurosci Ther 17(1):32–44

    Article  PubMed  Google Scholar 

  37. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci 32(10):3306–3320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou Y, Freyzon Y, Cho S, Mungenast AE, Muffat J, Mitalipova M, Pluth MD, Jui NT, Schule B, Lippard SJ, Tsai LH, Krainc D, Buchwald SL, Jaenisch R, Lindquist S (2013) Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342(6161):983–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012) Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32(10):3301–3305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kosuge Y, Taniguchi Y, Imai T, Ishige K, Ito Y (2011) Neuroprotective effect of mithramycin against endoplasmic reticulum stress-induced neurotoxicity in organotypic hippocampal slice cultures. Neuropharmacology 61(1–2):252–261

    Article  CAS  PubMed  Google Scholar 

  41. Egawa N, Yamamoto K, Inoue H, Hikawa R, Nishi K, Mori K, Takahashi R (2011) The endoplasmic reticulum stress sensor, ATF6alpha, protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem 286(10):7947–7957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Takano K, Tabata Y, Kitao Y, Murakami R, Suzuki H, Yamada M, Iinuma M, Yoneda Y, Ogawa S, Hori O (2007) Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am J Physiol Cell Physiol 292(1):C353–C361

    Article  CAS  PubMed  Google Scholar 

  43. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030

    Article  CAS  PubMed  Google Scholar 

  44. Binet F, Mawambo G, Sitaras N, Tetreault N, Lapalme E, Favret S, Cerani A, Leboeuf D, Tremblay S, Rezende F, Juan AM, Stahl A, Joyal JS, Milot E, Kaufman RJ, Guimond M, Kennedy TE, Sapieha P (2013) Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1alpha degradation of netrin-1. Cell Metab 17(3):353–371

    Article  CAS  PubMed  Google Scholar 

  45. Dong YF, Wang LX, Huang X, Cao WJ, Lu M, Ding JH, Sun XL, Hu G (2013) Kir6.1 knockdown aggravates cerebral ischemia/reperfusion-induced neural injury in mice. CNS Neurosci Ther 19(8):617–624

    Article  CAS  PubMed  Google Scholar 

  46. Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z (2011) Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res 1367:85–93

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Yan Y, Fu X, Hu H, Li X, Xiao J (2012) bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett 212(2):137–146

    Article  CAS  PubMed  Google Scholar 

  48. Yip PK, Malaspina A (2012) Spinal cord trauma and the molecular point of no return. Mol Neurodegener 7:6

    Article  PubMed Central  PubMed  Google Scholar 

  49. Silva NA, Sousa N, Reis RL, Salgado AJ (2013) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. doi:10.1016/j.pneurobio

    Article  PubMed  Google Scholar 

  50. Penas C, Verdu E, Asensio-Pinilla E, Guzman-Lenis MS, Herrando-Grabulosa M, Navarro X, Casas C (2011) Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury. Neuroscience 178:33–44

    Article  CAS  PubMed  Google Scholar 

  51. Valenzuela V, Collyer E, Armentano D, Parsons GB, Court FA, Hetz C (2012) Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis 3:e272

    Article  CAS  PubMed  Google Scholar 

  52. Ohri SS, Hetman M, Whittemore SR (2013) Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury. Neurobiol Dis 58:29–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J (2013) Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 48(3):452–464

    Article  PubMed  Google Scholar 

  54. Zhang HY, Zhang X, Wang ZG, Shi HX, Wu FZ, Lin BB, Xu XL, Wang XJ, Fu XB, Li ZY, Shen CJ, Li XK, Xiao J (2013) Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury. CNS Neurosci Ther 19(1):20–29

    Article  CAS  PubMed  Google Scholar 

  55. Dentel C, Palamiuc L, Henriques A, Lannes B, Spreux-Varoquaux O, Gutknecht L, Rene F, Echaniz-Laguna A, Gonzalez de Aguilar JL, Lesch KP, Meininger V, Loeffler JP, Dupuis L (2013) Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity. Brain 136(Pt 2):483–493

    Article  PubMed  Google Scholar 

  56. Qiang L, Fujita R, Abeliovich A (2013) Remodeling neurodegeneration: somatic cell reprogramming-based models of adult neurological disorders. Neuron 78(6):957–969

    Article  CAS  PubMed  Google Scholar 

  57. Dodge JC, Treleaven CM, Fidler JA, Tamsett TJ, Bao C, Searles M, Taksir TV, Misra K, Sidman RL, Cheng SH, Shihabuddin LS (2013) Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc Natl Acad Sci U S A 110(26):10812–10817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  59. Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009) ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol 39(2):81–89

    Article  CAS  PubMed  Google Scholar 

  60. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, Andres PL, Mahoney K, Allred P, Alexander K, Ostrow LW, Schoenfeld D, Macklin EA, Norris DA, Manousakis G, Crisp M, Smith R, Bennett CF, Bishop KM, Cudkowicz ME (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12(5):435–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22(11):1451–1464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Carreras I, Yuruker S, Aytan N, Hossain L, Choi JK, Jenkins BG, Kowall NW, Dedeoglu A (2010) Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res 1313:192–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Nanou A, Higginbottom A, Valori CF, Wyles M, Ning K, Shaw P, Azzouz M (2013) Viral delivery of antioxidant genes as a therapeutic strategy in experimental models of amyotrophic lateral sclerosis. Mol Ther 21(8):1486–1496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30(3):400–407

    Article  CAS  PubMed  Google Scholar 

  65. Lupachyk S, Watcho P, Stavniichuk R, Shevalye H, Obrosova IG (2013) Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes 62(3):944–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kim MK, Kim HS, Lee IK, Park KG (2012) Endoplasmic reticulum stress and insulin biosynthesis: a review. Exp Diabetes Res 2012:509437

    PubMed Central  PubMed  Google Scholar 

  67. Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461

    Article  CAS  PubMed  Google Scholar 

  68. Sims-Robinson C, Zhao S, Hur J, Feldman EL (2012) Central nervous system endoplasmic reticulum stress in a murine model of type 2 diabetes. Diabetologia 55(8):2276–2284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Cameron NE (2013) Role of endoplasmic reticulum stress in diabetic neuropathy. Diabetes 62(3):696–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Srinivasan K, Sharma SS (2011) Augmentation of endoplasmic reticulum stress in cerebral ischemia/reperfusion injury associated with comorbid type 2 diabetes. Neurol Res 33(8):858–865

    Article  PubMed  Google Scholar 

  71. Srinivasan K, Sharma SS (2012) 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci 90(3–4):154–160

    Article  CAS  PubMed  Google Scholar 

  72. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12:627–636

    Article  CAS  PubMed  Google Scholar 

  73. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T (2012) Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci Off J Soc Neurosci 32:3306–3320

    Article  CAS  Google Scholar 

  74. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y (2004) Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 66:899–908

    Article  CAS  PubMed  Google Scholar 

  75. Mizukami T, Orihashi K, Herlambang B, Takahashi S, Hamaishi M, Okada K (2010) Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J Vasc Surg 52:1580–156

    Article  PubMed  Google Scholar 

  76. Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I (2011) Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model. Mol Neurodegener 6:81

    Article  PubMed Central  PubMed  Google Scholar 

  77. Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10:44–58

    Article  CAS  PubMed  Google Scholar 

  78. Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CM, D’Hooge R (2013) Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis 50:21–29

    Article  CAS  PubMed  Google Scholar 

  79. Oida Y, Hamanaka J, Hyakkoku K, Shimazawa M, Kudo T, Imaizumi K et al (2010) Post-treatment of a BiP inducer prevents cell death after middle cerebral artery occlusion in mice. Neurosci Lett 484:43–46

    Article  CAS  PubMed  Google Scholar 

  80. Jiang P, Gan M, Ebrahim AS, Lin WL, Melrose HL, Yen SH (2010) ER stress response plays an important role in aggregation of alpha-synuclein. Mol Neurodegener 5:56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents (to J.X.), National Natural Science Funding of China (81372112, 81200958, 81200010, 81302775), Zhejiang Provincial Project of Protein Medicine Key Group (2010R50042).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HY., Wang, Zg., Lu, XH. et al. Endoplasmic Reticulum Stress: Relevance and Therapeutics in Central Nervous System Diseases. Mol Neurobiol 51, 1343–1352 (2015). https://doi.org/10.1007/s12035-014-8813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8813-7

Keywords

Navigation