Skip to main content

Advertisement

Log in

Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cognitive Impairment in Sepsis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent clinical studies have shown that sepsis survivors may develop long-term cognitive impairments. The cellular and molecular mechanisms involved in these events are not well understood. This study investigated synaptic deficits in sepsis and the involvement of glial cells in this process. Septic animals showed memory impairment and reduced numbers of hippocampal and cortical excitatory synapses, identified by synaptophysin/PSD-95 co-localization, 9 days after disease onset. The behavioral deficits and synaptophysin/PSD-95 co-localization were rescued to normal levels within 30 days post-sepsis. Septic mice presented activation of microglia and reactive astrogliosis, which are hallmarks of brain injury and could be involved in the associated synaptic deficits. We treated neuronal cultures with conditioned medium derived from cultured astrocytes (ACM) and microglia (MCM) that were either non-stimulated or stimulated with lipopolysaccharide (LPS) to investigate the molecular mechanisms underlying synaptic deficits in sepsis. ACM and MCM increased the number of synapses between cortical neurons in vitro, and these effects were antagonized by LPS stimulation. LPS-MCM reduced the number of synapses by 50 %, but LPS-ACM increased the number of synapses by 500 %. Analysis of the composition of these conditioned media revealed increased levels of IL-1β in LPS-MCM. Furthermore, inhibition of IL-1β signaling through the addition of a soluble IL-1β receptor antagonist (IL-1 Ra) fully prevented the synaptic deficit induced by LPS-MCM. These results suggest that sepsis induces a transient synaptic deficit associated with memory impairments mediated by IL-1β secreted by activated microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  CAS  PubMed  Google Scholar 

  2. Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 16:1787–1794

    Article  Google Scholar 

  3. Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme JF Jr (2005) Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 171:340–347

    Article  PubMed  Google Scholar 

  4. Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, Gordon SM, Canonico AE, Dittus RS, Bernard GR, Ely EW (2010) Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 38:1513–1520

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wilcox ME, Brummel NE, Archer K, Ely EW, Jackson JC, Hopkins RO (2013) Cognitive dysfunction in ICU patients: risk factors, predictors, and rehabilitation interventions. Crit Care Med 41:S81–S98

    Article  PubMed  Google Scholar 

  6. Polito A, Eischwald F, Maho AL, Polito A, Azabou E, Annane D, Chrétien F, Stevens RD, Carlier R, Sharshar T (2013) Pattern of brain injury in the acute setting of human septic shock. Crit Care 17:R204

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gofton TE, Young GB (2012) Sepsis-associated encephalopathy. Nat Rev Neurol 10:557–566

    Article  Google Scholar 

  8. Bozza FA, D’Avila JC, Ritter C, Sonneville R, Sharshar T, Dal-Pizzol F (2013) Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 1:10–16

    Article  Google Scholar 

  9. Tuon L, Comim CM, Petronilho F, Barichello T, Izquierdo I, Quevedo J, Dal-Pizzol F (2008) Time-dependent behavioral recovery after sepsis in rats. Intensive Care Med 34:1724–1731

    Article  CAS  PubMed  Google Scholar 

  10. Hernandes MS, D’Avila JC, Trevelin SC, Reis PA, Kinjo ER, Lopes LR, Castro-Faria-Neto HC, Cunha FQ, Britto LR, Bozza FA (2014) The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation 11:36

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ben Achour S, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57:440–445

    Article  CAS  PubMed  Google Scholar 

  12. Tremblay ME (2011) The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. Neuron Glia Biol 1:67–76

    Article  Google Scholar 

  13. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  CAS  PubMed  Google Scholar 

  15. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  16. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54:99–105

    Article  CAS  PubMed  Google Scholar 

  18. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, Kahn SA, Romão LF, de Miranda J, Alves-Leon SV, de Souza JM, Castro NG, Panizzutti R, Gomes FC (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 49:41432–41445

    Article  Google Scholar 

  19. Lima FR, Gervais A, Colin C, Izembart M, Neto VM, Mallat M (2001) Regulation of microglial development: a novel role for thyroid hormone. J Neurosci 6:2028–2038

    Google Scholar 

  20. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  21. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  CAS  PubMed  Google Scholar 

  22. Bibb JA, Mayford MR, Tsien JZ, Alberini CM (2010) Cognition enhancement strategies. J Neurosci 30:14987–14992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Felice FG, Wasilewska-Sampaio AP, Barbosa AC, Gomes FC, Klein WL, Ferreira ST (2007) Cyclic AMP enhancers and abeta oligomerization blockers as potential therapeutic agents in Alzheimer’r disease. Curr Alzheimer Res 4:263–271

    Article  PubMed  Google Scholar 

  24. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29:12776–12786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holtzman DM, Herz J, Bu G (2012) Apolipoprotein e and apolipoprotein e receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2:a6312

    Article  Google Scholar 

  26. Imamura Y, Wang H, Matsumoto N, Muroya T, Shimazaki J, Ogura H, Shimazu T (2011) Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187:63–69

    Article  CAS  PubMed  Google Scholar 

  27. Di Filippo M, Chiasserini D, Gardoni F, Viviani B, Tozzi A, Giampà C, Costa C, Tantucci M, Zianni E, Boraso M, Siliquini S, de Iure A, Ghiglieri V, Colcelli E, Baker D, Sarchielli P, Fusco FR, Di Luca M, Calabresi P (2013) Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis 52:229–236

    Article  PubMed  Google Scholar 

  28. Mallat M, Chamak B (1994) Brain macrophages: neurotoxic or neurotrophic effector cells? J Leukoc Biol 56:416–422

    CAS  PubMed  Google Scholar 

  29. Bialas AR, Stevens B (2013) TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16:1773–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lim SH, Park E, You B, Jung Y, Park AR, Park SG, Lee JR (2013) Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8:e81218

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stipursky J, Spohr TC, Sousa VO, Gomes FC (2012) Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res 37:2402–2418

    Article  CAS  PubMed  Google Scholar 

  32. Morris GP, Clark IA, Zinn R, Vissel B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53

    Article  CAS  PubMed  Google Scholar 

  33. Šišková Z, Tremblay MÈ (2013) Microglia and synapse: interactions in health and neurodegeneration. Neural Plast 2013:425845

    PubMed  PubMed Central  Google Scholar 

  34. Azevedo EP, Ledo JH, Barbosa G, Sobrinho M, Diniz L, Fonseca AC, Gomes FC, Romão L, Lima FR, Palhano FL, Ferreira ST, Foguel D (2013) Activated microglia mediate synapse loss and short-term memory deficits in a mouse model of transthyretin-related oculoleptomeningeal amyloidosis. Cell Death Dis 4:e789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hama H, Hara C, Yamaguchi K, Miyawaki A (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415

    Article  CAS  PubMed  Google Scholar 

  36. Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  CAS  PubMed  Google Scholar 

  37. Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G, Weaver M, Sage EH, Barres BA, Eroglu C (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci USA 108:E440–E449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 7:1596–1609

    Article  Google Scholar 

  40. Welser-Alves JV, Milner R (2013) Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int 1:47–53

    Article  Google Scholar 

  41. Mishra A, Kim HJ, Shin AH, Thayer SA (2012) Synapse loss induced by interleukin-1β requires pre- and post-synaptic mechanisms. J Neuroimmune Pharmacol 3:571–578

    Article  Google Scholar 

  42. Serantes R, Arnalich F, Figueroa M, Salinas M, Andrés-Mateos E, Codoceo R (2006) Interleukin-1ß enhances GABAA receptor cell-surface expression by a phosphatidylinisitol 3-kinase/Akt pathway: relevance to sepsis associated encephalopathy. J Biol Chem 281:14632–14643

    Article  CAS  PubMed  Google Scholar 

  43. Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M (2010) The impact os IL-1 modulation on the development of lipopolysaccharide-induce cognitive dysfunction. Crit Care 14:R88

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mina F, Comim CM, Dominguini D, Cassol-Jr OJ, Dall Igna DM, Ferreira GK, Silva MC, Galant LS, Streck EL, Quevedo J, Dal-Pizzol F (2013) IL1-β involvement in cognitive impairment after sepsis. Mol Neurobiol 49:1069–1076

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marcelo Meloni for technical assistance. This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Institute of Glia (iGLIA/CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors declare no conflicts of interest.

Author contributions

C.A.M., G.S., T.C.L.S.S., J.D’, F.R.S.L., C.F.B., F.A.B..., and F.C.A.G. designed the research; C.A.M., G.S., T.C.L.S.S., and J.D. performed the research; C.A.M., T.C.L.S.S., J.D., F.R.S.L., C.F.B., F.A.B..., and F.C.A.G. analyzed the data; and C.A.M., F.A.B..., and F.C.A.G. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Carvalho Alcantara Gomes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

ELISA of synaptic proteins in the hippocampus and cerebral cortex at 3, 9, and 30 days after CLP induction. Sepsis did not alter the levels of synaptophysin and PSD-95 in hippocampus (a, b). Only at 3 days post sepsis, a decrease of synaptophysin in the cerebral cortex was observed, while PSD-95 level remained the same between sham and CLP mice in all the days analyzed (c, d). Data are the mean ± SEM. n = 3. Student’s t test, p < 0.05 (EPS 181 kb)

Supplemental Fig. 2

LPS induces reactive gliosis and microglial activation in cultured cells. Cultures of cerebral cortex astrocytes and microglia were incubated for 24 h with DMEM-F12 (control) or 50 ng/mL and 1 μg/mL LPS. Subsequently, cultures were analyzed by immunolabeling for GFAP and F4/80, which are astrocyte and microglial markers, respectively. LPS at 50 ng/mL and 1 μg/mL increased GFAP labeling in astrocyte cultures by 91 % and 176 %, respectively (d). LPS elicited an increase of 176–220 % in the number of F4/80-positive amoeboid microglial cells (h). e’ and g’ show magnification of the squares in e and g, respectively. Data are the mean ± SEM. n = 4. ANOVA, Tukey’s post hoc test, p < 0.05. Scale bar, 10 μm (a) (GIF 25 kb)

High Resolution Image (TIFF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, C.A., Santos, G., Spohr, T.C.L.S. et al. Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cognitive Impairment in Sepsis. Mol Neurobiol 52, 653–663 (2015). https://doi.org/10.1007/s12035-014-8868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8868-5

Keywords

Navigation