Skip to main content

Advertisement

Log in

A2A Adenosine Receptor Regulates the Human Blood-Brain Barrier Permeability

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The blood-brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human BBB (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent, and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent downregulation of claudin-5 and VE-cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deeken JF, Loscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. doi:10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  3. Giacomini KM (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236. doi:10.1038/nrd3028

    Article  CAS  PubMed  Google Scholar 

  4. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ribatti D, Nico B, Crivellato E, Artico M (2006) Development of the blood-brain barrier: a historical point of view. Anat Rec B New Anat 289:3–8

    Article  PubMed  Google Scholar 

  6. Hossain S, Akaike T, Chowdhury EH (2010) Current approaches for drug delivery to central nervous system. Curr Drug Deliv 7:389–397

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn MR, Vance CO, Morschl E, Wilson CN (2009) Adenosine receptors and inflammation Handb Exp Pharmacol:215-269 doi:10.1007/978-3-540-89615-9_8

  8. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. doi:10.1038/nrd2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fredholm BB APIJ, Jacobson KA, Linden J, Muller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34. doi:10.1124/pr.110.003285

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 31:13272–13280. doi:10.1523/JNEUROSCI.3337-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mills JH, Alabanza L, Weksler BB, Couraud PO, Romero IA, Bynoe MS (2011) Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal 7:265–273. doi:10.1007/s11302-011-9222-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mills JH et al (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:9325–9330. doi:10.1073/pnas.0711175105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sohail MA et al (2009) Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology 49:185–194. doi:10.1002/hep.22589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement science. Science 326:1208–1212. doi:10.1126/science.1175862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–253

    Article  CAS  PubMed  Google Scholar 

  17. Li G et al (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng 38:2499–2511

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carman CV, Springer TA (2008) Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 20:533–540. doi:10.1016/j.ceb.2008.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol 109:181–190. doi:10.1007/s00401-004-0928-x

    Article  PubMed  Google Scholar 

  20. Adamson RH (2002) Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J Physiol 539:295–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. doi:10.1146/annurev.cellbio.21.020604.150721

    Article  CAS  PubMed  Google Scholar 

  22. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456. doi:10.1038/nrm1128

    Article  CAS  PubMed  Google Scholar 

  23. Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS (2000) Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell

  24. Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G (2009) Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol 186:85–97. doi:10.1083/jcb.200901084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeyaraj SC (2012) Cyclic AMP-Rap1A signaling activates RhoA to induce alpha(2c)-adrenoceptor translocation to the cell surface of microvascular smooth muscle cells. Am J Physiol Cell Physiol 303:C499–511. doi:10.1152/ajpcell.00461.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599. doi:10.1038/nrm882

    Article  CAS  PubMed  Google Scholar 

  27. Wu MH (2005) Endothelial focal adhesions and barrier function. J Physiol 569:359–366. doi:10.1113/jphysiol.2005.096537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevenson BR, Keon BH (1998) The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 14:89–109. doi:10.1146/annurev.cellbio.14.1.89

    Article  CAS  PubMed  Google Scholar 

  29. Hordijk PL, Anthony E, Mul FP, Rientsma R, Oomen LC, Roos D (1999) Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci 112(Pt 12):1915–1923

    CAS  PubMed  Google Scholar 

  30. Millan J (2010) Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol 8:11. doi:10.1186/1741-7007-8-11

    Article  PubMed  PubMed Central  Google Scholar 

  31. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083. doi:10.1517/13543780903052764

    Article  CAS  PubMed  Google Scholar 

  32. Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institute of Health (NIH) Grant R01 NS063011 (to M.S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret S. Bynoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DG., Bynoe, M.S. A2A Adenosine Receptor Regulates the Human Blood-Brain Barrier Permeability. Mol Neurobiol 52, 664–678 (2015). https://doi.org/10.1007/s12035-014-8879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8879-2

Keywords

Navigation