Skip to main content

Advertisement

Log in

Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammatory reactions are the most critical pathological processes occurring after spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. However, the mechanism of microglia/macrophage polarization to M1/M2 at the injured spinal cord environment remains unknown. In this study, wild-type (WT) or aldose reductase (AR)-knockout (KO) mice were subjected to SCI by a spinal crush injury model. The expression pattern of AR, behavior tests for locomotor activity, and lesion size were assessed at between 4 h and 28 days after SCI. We found that the expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR deficiency-induced microglia/macrophages induce the M2 rather than the M1 response and promote locomotion recovery after SCI in mice. In the in vitro experiments, microglia cell lines (N9 or BV2) were treated with the AR inhibitor (ARI) fidarestat. AR inhibition caused 4-hydroxynonenal (HNE) accumulation, which induced the phosphorylation of the cAMP response element-binding protein (CREB) to promote Arg1 expression. KG501, the specific inhibitor of phosphorylated CREB, could cancel the upregulation of Arg1 by ARI or HNE stimulation. Our results suggest that AR works as a switch which can regulate microglia by polarizing cells to either the M1 or the M2 phenotype under M1 stimulation based on its states of activity. We suggest that inhibiting AR may be a promising therapeutic method for SCI in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    Article  CAS  PubMed  Google Scholar 

  2. Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 31:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Busch SA, Horn KP, Cuascut FX, Hawthorne AL, Bai L, Miller RH, Silver J (2010) Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury. J Neurosci 30:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Busch SA, Horn KP, Silver DJ, Silver J (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29:9967–9976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG (2009) Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 29:3956–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carrico KM, Vaishnav R, Hall ED (2009) Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 26:1369–1378

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281–299

    Google Scholar 

  11. Zhao X, Wu J, Kuang F, Wang J, Ju G (2011) Silencing of Nogo-A in rat oligodendrocyte cultures enhances process branching. Neurosci Lett 499:32–36

    Article  CAS  PubMed  Google Scholar 

  12. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388

    Article  CAS  PubMed  Google Scholar 

  13. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava SK, Yadav UC, Reddy AB, Saxena A, Tammali R, Shoeb M, Ansari NH, Bhatnagar A, Petrash MJ, Srivastava S, Ramana KV (2011) Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 191:330–338

  15. Ramana KV, Bhatnagar A, Srivastava S, Yadav UC, Awasthi S, Awasthi YC, Srivastava SK (2006) Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J Biol Chem 281:17652–17660

    Article  CAS  PubMed  Google Scholar 

  16. Ramana KV, Srivastava SK (2010) Aldose reductase: a novel therapeutic target for inflammatory pathologies. Int J Biochem Cell Biol 42:17–20

    Article  CAS  PubMed  Google Scholar 

  17. Ramana KV, Fadl AA, Tammali R, Reddy AB, Chopra AK, Srivastava SK (2006) Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J Biol Chem 281:33019–33029

    Article  CAS  PubMed  Google Scholar 

  18. Ho HT, Chung SK, Law JW, Ko BC, Tam SC, Brooks HL, Knepper MA, Chung SS (2000) Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Mol Cell Biol 20:5840–5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Plemel JR, Duncan G, Chen KW, Shannon C, Park S, Sparling JS, Tetzlaff W (2008) A graded forceps crush spinal cord injury model in mice. J Neurotrauma 25:350–370

    Article  PubMed  Google Scholar 

  20. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23:635–659

    Article  PubMed  Google Scholar 

  21. Blanchard B, Heurtaux T, Garcia C, Moll NM, Caillava C, Grandbarbe L, Klosptein A, Kerninon C, Frah M, Coowar D, Baron-Van EA, Morga E, Heuschling P, Nait OB (2013) Tocopherol derivative TFA-12 promotes myelin repair in experimental models of multiple sclerosis. J Neurosci 33:11633–11642

    Article  CAS  PubMed  Google Scholar 

  22. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  23. Sisnaiske J, Hausherr V, Krug AK, Zimmer B, Hengstler JG, Leist M, van Thriel C (2014) Acrylamide alters neurotransmitter induced calcium responses in murine ESC-derived and primary neurons. Neurotoxicology 43:117–126

    Article  CAS  PubMed  Google Scholar 

  24. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia 61:349–360

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sypecka J, Sarnowska A, Gadomska-Szablowska I, Lukomska B, Domanska-Janik K (2013) Differentiation of glia-committed NG2 cells: the role of factors released from hippocampus and spinal cord. Acta Neurobiol Exp (Wars) 73:116–129

  26. Zhao Y, Bian G, Yu C, Liu F, Liu L, Guo H, Guo J, Ju G, Wang J (2012) Cross-reactivity of anti-programmed death ligand 2 polyclonal antibody in mouse tissues. Sci China Life Sci 55:940–947

    Article  CAS  PubMed  Google Scholar 

  27. Beutner C, Linnartz-Gerlach B, Schmidt SV, Beyer M, Mallmann MR, Staratschek-Jox A, Schultze JL, Neumann H (2013) Unique transcriptome signature of mouse microglia. Glia 61:1429–1442

    Article  PubMed  Google Scholar 

  28. Kim JB, Sig CJ, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421

    Article  CAS  PubMed  Google Scholar 

  29. Chan CC (2008) Inflammation: beneficial or detrimental after spinal cord injury? Recent Pat CNS Drug Discov 3:189–199

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Article  CAS  PubMed  Google Scholar 

  31. Joshi M, Fehlings MG (2002) Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma 19:175–190

    Article  PubMed  Google Scholar 

  32. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N, Nerlov C (2009) A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A 106:17475–17480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK (2003) Aldose reductase mediates the mitogenic signals of cytokines. Chem Biol Interact 143–144:587–596

    Article  PubMed  Google Scholar 

  35. Ramana KV, Srivastava SK (2006) Mediation of aldose reductase in lipopolysaccharide-induced inflammatory signals in mouse peritoneal macrophages. Cytokine 36:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reddy AB, Srivastava SK, Ramana KV (2010) Aldose reductase inhibition prevents lipopolysaccharide-induced glucose uptake and glucose transporter 3 expression in RAW264.7 macrophages. Int J Biochem Cell Biol 42:1039–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lo AC, Cheung AK, Hung VK, Yeung CM, He QY, Chiu JF, Chung SS, Chung SK (2007) Deletion of aldose reductase leads to protection against cerebral ischemic injury. J Cereb Blood Flow Metab 27:1496–1509

    Article  CAS  PubMed  Google Scholar 

  38. Ramunno A, Cosconati S, Sartini S, Maglio V, Angiuoli S, La Pietra V, Di Maro S, Giustiniano M, La Motta C, Da SF, Marinelli L, Novellino E (2012) Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem 51:216–226

    Article  CAS  PubMed  Google Scholar 

  39. Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  CAS  PubMed  Google Scholar 

  41. Longbrake EE, Lai W, Ankeny DP, Popovich PG (2007) Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J Neurochem 102:1083–1094

    Article  CAS  PubMed  Google Scholar 

  42. Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500:267–285

    Article  CAS  PubMed  Google Scholar 

  43. Hers HG (1956) The mechanism of the transformation of glucose in fructose in the seminal vesicles. Biochim Biophys Acta 22:202–203

    Article  CAS  PubMed  Google Scholar 

  44. O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355

    Article  PubMed  Google Scholar 

  45. Xu W, Chi L, Xu R, Ke Y, Luo C, Cai J, Qiu M, Gozal D, Liu R (2005) Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord 43:204–213

    Article  CAS  PubMed  Google Scholar 

  46. Ananieva O, Darragh J, Johansen C, Carr JM, McIlrath J, Park JM, Wingate A, Monk CE, Toth R, Santos SG, Iversen L, Arthur JS (2008) The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat Immunol 9:1028–1036

    Article  CAS  PubMed  Google Scholar 

  47. El KK, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, Basaraba RJ, Konig T, Schleicher U, Koo MS, Kaplan G, Fitzgerald KA, Tuomanen EI, Orme IM, Kanneganti TD, Bogdan C, Wynn TA, Murray PJ (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9:1399–1406

    Article  Google Scholar 

  48. Terubayashi H, Sato S, Nishimura C, Kador PF, Kinoshita JH (1989) Localization of aldose and aldehyde reductase in the kidney. Kidney Int 36:843–851

    Article  CAS  PubMed  Google Scholar 

  49. Vaillancourt F, Morquette B, Shi Q, Fahmi H, Lavigne P, Di Battista JA, Fernandes JC, Benderdour M (2007) Differential regulation of cyclooxygenase-2 and inducible nitric oxide synthase by 4-hydroxynonenal in human osteoarthritic chondrocytes through ATF-2/CREB-1 transactivation and concomitant inhibition of NF-kappaB signaling cascade. J Cell Biochem 100:1217–1231

    Article  CAS  PubMed  Google Scholar 

  50. Crabb JW, Yuan X, Dvoriantchikova G, Ivanov D, Crabb JS, Shestopalov VI (2010) Preliminary quantitative proteomic characterization of glaucomatous rat retinal ganglion cells. Exp Eye Res 91:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ho EC, Lam KS, Chen YS, Yip JC, Arvindakshan M, Yamagishi S, Yagihashi S, Oates PJ, Ellery CA, Chung SS, Chung SK (2006) Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 55:1946–1953

    Article  CAS  PubMed  Google Scholar 

  52. Price SA, Agthong S, Middlemas AB, Tomlinson DR (2004) Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 53:1851–1856

    Article  CAS  PubMed  Google Scholar 

  53. Cheung AK, Fung MK, Lo AC, Lam TT, So KF, Chung SS, Chung SK (2005) Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 54:3119–3125

    Article  CAS  PubMed  Google Scholar 

  54. Pandey S, Srivastava SK, Ramana KV (2012) A potential therapeutic role for aldose reductase inhibitors in the treatment of endotoxin-related inflammatory diseases. Expert Opin Investig Drugs 21:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Jian-yong Qiu and Ms. Ling-ling Fei for their technical assistance. This work was supported by the National Natural Science Foundation of China (31271127, 31201094, 81100899, 81401019, 81371364) and the Natural Science Foundation of Shaanxi Province (2012JZ4002).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong Ju or Jian Wang.

Additional information

Qian Zhang, Ganlan Bian, and Peng Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Bian, G., Chen, P. et al. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice. Mol Neurobiol 53, 662–676 (2016). https://doi.org/10.1007/s12035-014-9035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9035-8

Keywords

Navigation